
Abstract— In this paper, we present a new full-rate, full-
diversity coordinate interleaved design (CID) for multiple-input 
multiple-output (MIMO) systems with two transmit antennas. 
When compared with the conventional space-time block codes 
(STBCs) and coordinate interleaved orthogonal designs (CIODs), 
the proposed scheme is above the predefined full-rate limits since 
we ignore the pure orthogonality principle while transmitting 
extra symbols from available slots. The higher complexity of this 
structure due to non-orthogonality is reduced by using a simple 
conditional maximum-likelihood (ML) decoder. The new CID 
achieves full-diversity with a high minimum determinant, and 
outperforms its counterpart given by Sezginer and Sari with 
certain constellations, which make it to be considered for the 
future high data rate wireless applications. 

I. INTRODUCTION 
Alamouti’s STBC [1] and spatial multiplexing (SM) are the 

two extreme cases for a MIMO system with two transmit 
antennas. Alamouti’s STBC achieves full-diversity but it is 
only half-rate since it wastes available space-time slots while 
offering orthogonality. However, SM does not offer spatial 
diversity at the transmitter side but its data rate is twice as that 
of Alamouti’s STBC. Some intermediate solutions to combine 
the attractive features of Alamouti’s STBC and SM are 
recently proposed. One of them is the Golden code [2], which 
is known as one of the best 2×2 STBCs and actually exists in 
WiMAX standards, but the implementation of its complex 
sphere decoder is its main problem. In [3], Sezginer and Sari 
(SS) shown that a new generation STBC with reduced decoder 
complexity compared to the Golden code, which transmits 
four information symbols in four space-time slots, is possible 
without using a complex-structured sphere decoder. However, 
since the minimum determinant of this STBC is smaller than 
that of the Golden Code, this leads to a performance 
drawback. This paper presents a new design which achieves 
the Golden code’s performance with SS-STBC’s decoding 
complexity. 

II. THE NEW COORDINATE INTERLEAVED DESIGN 
For two transmit antennas MIMO system, the CIOD given 

in [5], takes a block of two modulated symbols x0 and x1 and 
transmits them from two antennas in two time intervals 
according to the code matrix given by 

0 1

1 0

0
0

R I

R I

x jx
x jx

+⎡ ⎤
⎢ ⎥+⎣ ⎦

 (1) 

where xiR and xiI for 0,1i = , are the real and imaginary parts 
of xi, columns and rows denote transmit antennas and time 
slots, respectively. The empty slots in (1) waste the available 
space-time slots for orthogonality, furthermore lead to a very 

high peak-to-average power ratio (PAPR) which prevents its 
practical implementation. We propose a new coordinate inter-
leaved design which takes a block of four modulated symbols 
x0, x1, x2, and x3, and transmits them from two antennas in two 
time intervals according to the code matrix given by 
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In (2), a, b, c, and d are the complex design parameters to be 
determined by the design criteria [4]. In terms of the equal 
total transmitted power in each symbol interval and for each 
symbol, the condition on a, b, c, and d is given as 

1a b c d= = = = . We named this code matrix as 
coordinate interleaved design (CID) instead of CIOD since it 
lost its pure orthogonality while transmitting additional 
symbols from empty slots of CIOD. For mathematical 
convenience we chose two receive antenna case as well as the 
proposed scheme can be easily extended to more than two 
transmit antennas. Let 0 0 1 1 1 0,  ,R I R Ix x jx x x jx= + = +  

2 2 3 ,R Ix x jx= + 3 3 2R Ix x jx= +  denote the interleaved 
symbols, then the received signals at two receive antennas are 
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where hij denotes the channel coefficient between the transmit 
antenna j and receive antenna i, and ni represent the complex 
additive Gaussian noise at the receiver. Both of hij and ni  are 
i.i.d. complex Gaussian random variables with the pdfs 

(0,1)N  and 0(0, )N N , respectively. The ML detector 
makes a search over all possible values of x0, x1, x2, and x3 and 
decides in favor of the quadruple which minimizes the 
decision metric, 
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 (4) 
This search requires the computation of 4M  metrics, however 
by computing intermediate signals we reduce the decoder 
complexity from 4M  to 32M   as follows. From (3), we 
compute intermediate signals for all possible values of x2 and 
x3 and while going over this search, for only the correct values 
of 2x , therefore 3x , we obtain the intermediate signals as 
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then we combine them to form ( )* *
0 11 0 21 2 /y h z h z a= +  and 

( )* *
1 12 1 22 3 /y h z h z b= + . It can be proved that, by using the ML 

decoding procedures for CIOD given in (2), ML estimates of 
x0 and x1 conditioned on the pair (x2, x3) are found as 
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where { } { }0 0 1ˆ Re Imx y j y= +  and { } { }1 1 0ˆ Re Imx y j y= + . 
The minimizations in (6) and (7) are over all possible values 
of the transmitted symbols x0 and x1 taken from M-component 
signal set. Then we minimize the metric ( )0 1 2 3, , ,ML MLD x x x x  
over all possible values of the pair (x2, x3) instead of 
minimizing ( )0 1 2 3, , ,D x x x x  over all possible values of x0, x1, 
x2, and x3. This leads to a reduction in decoder complexity 
from 4M  to 32M . In other words, instead of suffering from 

4M  metric computations, we only search with a decoding 
complexity of 2M , and obtain conditional ML estimates of x0 
and x1, which needs an additional decoding complexity of 2M 
per each step of 2M  calculation. Therefore, we obtain a total 
decoding complexity of 2 32 2M M M× =  which is the same 
as that of SS-STBC [3]. 

III. PERFORMANCE ISSUES AND SIMULATION RESULTS 
For a CID, the considered parameter to obtain full-diversity 

and high coding gain is the coordinate product distance 
(CPD). The optimum rotation angles which give maximum 
CPDs for QPSK with symbols on the two axis and M-QAM 
having odd-integer coordinates are found as equal to 13.2885º 
and 31.7175º, respectively. These optimum angles are used for 
the new CID because of its coordinate interleaved symbols. 
The complex design parameters a, b, c, and d in (2) are used to 
obtain full-diversity and high coding gain. Therefore, we aim 
to obtain non-vanishing determinant for all realizations of the 
distance matrix by optimizing design parameters a, b, c, and d. 
The sufficient condition for a non-vanishing determinant is 
found as * * * *abc d a b cd j= − = ± . In our simulations we use 
the set ( ,1,1,1)j . By this condition, at the optimal rotation 
angle for a given signal constellation, the new CID given in 
(2) achieves the same minimum determinant as that of CIOD 
given in (1). Table 1 shows the minimum determinants of the 
Golden Code [2], SS-STBC [3], CIOD [5], and the new CID 

for QPSK, 4/16/64-QAM modulations. For all modulations, 
CIOD and the new CID use rotated signal constellations to 
obtain maximum CPD. From these results we conclude that 
the new CID provides the same minimum determinant as that 
of the Golden Code and higher minimum determinant as that 
of SS-STBC for all modulations. In Fig. 1, we compare the 
codeword error performances (CER) of the SS-STBC and the 
new CID, as a function of received SNR. As seen from Fig. 1, 
the proposed CID outperforms SS-STBC for 4-QAM and 16-
QAM constellations according to the minimum determinants 
given in Table 1.  
 

TABLE 1: Minimum Determinants for Golden Code [2], SS-STBC 
[3], CIOD (1), and new CID (2) 

Min. Det. QPSK 4-QAM 16-QAM 64-QAM 
Golden C. 0.8 3.2 3.2 3.2 
SS-STBC 0.5 2 1.98 1.88 

CIOD 0.7998 3.2 3.2 3.2 
New CID 0.7998 3.2 3.2 3.2 
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Fig. 1: Codeword error performances of SS-STBC and new 
CID for 2×2 MIMO system 
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