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Abstract—In this paper, a novel orthogonal frequency di-
vision multiplexing (OFDM) scheme, which is called OFDM
with index modulation (OFDM-IM), is proposed for frequency-
selective fading channels. In this scheme, inspiring from the
recently introduced spatial modulation concept for multiple-input
multiple-output (MIMO) channels, the information is conveyed
not only by M -ary signal constellations as in classical OFDM,
but also by the indices of the subcarriers, which are activated
according to the incoming bit stream. Different transceiver
structures are proposed and a theoretical error performance
analysis is provided for the new scheme. It is shown via computer
simulations that the proposed scheme achieves significantly better
error performance than classical OFDM due to the information
bits carried in the spatial domain by the indices of OFDM
subcarriers.

I. INTRODUCTION

Multicarrier transmission has become a key technology for
wideband digital communications in recent years and has been
included in many wireless standards. Orthogonal frequency
division multiplexing (OFDM) has been the most popular
multicarrier transmission technique in wireless communica-
tions. Similarly, multiple-input multiple-output (MIMO) trans-
mission techniques have been implemented in many practical
applications, due to their benefits over single antenna systems.
Spatial modulation (SM), which uses the spatial domain to
convey information in addition to the classical signal con-
stellations, has emerged as a promising MIMO transmission
technique [1], [2]. The application of the SM principle to
the subcarriers of an OFDM system has been proposed in
[3]. However, in this scheme, the number of active OFDM
subcarriers varies for each OFDM block, and furthermore, a
kind of perfect feedforward is assumed from the transmitter
to the receiver via the excess subcarriers to explicitly signal
the mapping method for the subcarrier index selecting bits.

In this paper, taking a different approach from [3], we
propose a novel transmission scheme called OFDM with
index modulation (OFDM-IM) for frequency selective fading
channels. In this scheme, information is conveyed not only
by M -ary signal constellations as in classical OFDM, but
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also by the indices of the subcarriers, which are activated
according to the incoming information bits. Unlike the scheme
of [3], feedforward signaling from transmitter to the receiver
is not required in our scheme in order to successfully detect
the transmitted information bits. A general method, by which
the number of active subcarriers can be adjusted, and the
incoming bits can be systematically mapped to these active
subcarriers, is presented for the OFDM-IM scheme. Different
mapping and detection techniques for the new scheme are
proposed, and it is shown via computer simulations and also
supported by a theoretical error performance analysis that the
proposed scheme achieves significantly better bit error rate
(BER) performance than the classical OFDM.

The rest of the paper can be summarized as follows. In
Section II, the system model of OFDM-IM is presented. In
Section III, we propose different implementation approaches
for OFDM-IM. The theoretical error performance of OFDM-
IM is investigated in Section IV. The computer simulation
results are given in Section V. Finally, Section VI concludes
the paper.
Notation: Bold, lowercase and capital letters are used for
column vectors and matrices, respectively. (·)T and (·)H
denote transposition and Hermitian transposition, respectively.
det (A) and rank (A) denote the determinant and rank of
A, respectively. λi (A) is the ith eigenvalue of A, where
λ1 (A) is the largest eigenvalue. IN×N and 0N1×N2

are
the identity and zero matrices with dimensions N × N and
N1 × N2, respectively. ‖·‖F stands for the Frobenius norm.
The probability of an event is denoted by P (·) and E {·}
stands for expectation. The probability density function (p.d.f.)
of a random vector x is denoted by f (x). X ∼ CN

(
0, σ2

X

)
represents the distribution of a circularly symmetric complex
Gaussian r.v. X with variance σ2

X . Q (·) denotes the tail
probability of the standard Gaussian distribution. C (n, k)
denotes the binomial coefficient and b·c is the floor function.
S denotes the complex signal constellation of size M .

II. SYSTEM MODEL OF OFDM-IM

Let us consider an OFDM-IM scheme which is operating
on a frequency-selective Rayleigh fading channel. A total of
m information bits enter the OFDM-IM transmitter for the
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Fig. 1. Block Diagram of the OFDM-IM Transmitter

transmission of each OFDM block. These m bits are then
split into g groups each containing p bits, i.e.,

m = pg. (1)

Each group of p-bits is mapped to an OFDM subblock of
length n, where n = N/g and N is the number of OFDM
subcarriers, i.e., the size of the fast Fourier transform (FFT).
Contrary to the classical OFDM, this mapping operation is
not only performed by means of the modulated symbols, but
also by the indices of the subcarriers. Inspiring from the SM
concept, additional information bits are transmitted by a subset
of the OFDM subcarrier indices. For each subblock, only k out
of n available indices are employed for this purpose and they
are determined by a selection procedure (different selection
procedures are presented in Sec. III) from a predefined set of
active indices, based on the first p1 bits of the incoming p-bits
sequence. We set the symbols corresponding to the inactive
subcarriers to zero, therefore, we do not transmit data with
them. The remaining

p2 = k log2M (2)

bits of this sequence are mapped on to the M -ary signal
constellation to determine the data symbols that modulate
the subcarriers having active indices, therefore, we have
p = p1 + p2. In other words, in the OFDM-IM scheme, the
information is conveyed by both of the M -ary constellation
symbols and the indices of the subcarriers that are modulated
by these constellation symbols. Due to the fact that we do
not use all of the available subcarriers, we compensate for the
loss in the total number of transmitted bits by transmitting
additional bits in the spatial domain of the OFDM block.

The block diagram of the OFDM-IM transmitter is given
in Fig. 1. For each subblock β, the incoming p1 bits are
transferred to the index selector, which chooses k active
indices out of n available indices, where the selected indices

are given by
Iβ = {iβ,1, . . . , iβ,k} (3)

where iβ,γ ∈ [1, . . . , n] for β = 1, . . . , g and γ = 1, . . . , k.
Therefore, for the total number of information bits carried by
the spatial position of the active indices in the OFDM block,
we have

m1 = p1g = blog2 (C (n, k))cg. (4)

In other words, Iβ has c = 2p1 possible realizations. On the
other hand, the total number of information bits carried by the
M -ary signal constellation symbols are given by

m2 = p2g = k (log2 (M)) g (5)

since the total number of active subcarriers is K = kg in our
scheme. Consequently, a total of

m = m1 +m2 (6)

bits are transmitted by a single block of the OFDM-IM
scheme. The vector of the modulated symbols at the output of
the M -ary mapper (modulator), which carries p2 bits, is given
by

sβ =
[
sβ (1) . . . sβ (k)

]
(7)

where sβ (γ) ∈ S, β = 1, . . . , g, γ = 1, . . . , k. We assume
that E{sβsHβ } = k, i.e., the signal constellation is normalized
to have unit average power. The OFDM block creator creates
all of the subblocks by taking into account Iβ and sβ for all
β first and it then forms the N × 1 main OFDM block

xF =
[
x (1) x (2) · · · x (N)

]T
(8)

where x (α) ∈ {0,S} , α = 1, . . . , N , by concatenating these
g subblocks. Unlike the classical OFDM, in our scheme xF
contains some zero terms whose positions carry information.

After this point, the same procedures as those of classical
OFDM are applied. The OFDM block is processed by the
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inverse FFT (IFFT) algorithm:

xT =
N√
K

IFFT {xF } =
1√
K

WH
NxF (9)

where xT is the time domain OFDM block, WN is the
discrete Fourier transform (DFT) matrix with WH

NWN =
NIN and the term N/

√
K is used for the normalization

E
{
xHT xT

}
= N (at the receiver, the FFT demodulator

employs a normalization factor of
√
K/N ). At the output

of the IFFT, a cyclic prefix (CP) of length L samples[
X (N − L+ 1) · · · X (N − 1) X (N)

]T
is appended to the

beginning of the OFDM block. After parallel to serial (P/S)
and digital-to-analog conversion, the signal is sent through
a frequency-selective Rayleigh fading channel which can be
represented by the channel impulse response (CIR) coefficients

hT =
[
hT (1) ... hT (ν)

]T
(10)

where hT (σ) , σ = 1, ..., ν are circularly symmetric complex
Gaussian random variables with the CN

(
0, 1ν

)
distribution.

Assuming that the channel remains constant during the trans-
mission of an OFDM block and the CP length L is larger than
ν, the equivalent frequency domain input-output relationship
of the OFDM scheme is given by

yF (α) = x (α)hF (α) + wF (α) , α = 1, . . . , N (11)

where yF (α), hF (α) and wF (α) are the received signals,
the channel fading coefficients and the noise samples in the
frequency domain, whose vector presentations are given as
yF , hF and wF , respectively. The distributions of hF (α) and
wF (α) are CN (0, 1) and CN (0, N0,F ), respectively, where
N0,F is the noise variance in the frequency domain, which is
related by the noise variance in the time domain by

N0,F = (K/N)N0,T . (12)

We define the signal-to-noise ratio (SNR) as

ρ = Eb/N0,T (13)

where Eb = (N + L) /m is the average transmitted energy
per bit. The spectral efficiency of the OFDM-IM scheme is
given by

m/ (N + L) [bits/s/Hz]. (14)

We assume that perfect channel state information is available
at the receiver.

The receiver’s task is to detect the indices of the active
subcarriers and the corresponding information symbols by
processing yF (α) , α = 1, . . . , N . Unlike the classical OFDM,
a simple maximum likelihood (ML) decision on x (α) cannot
be given by considering only y (α) in our scheme due to the
spatial information carried by the OFDM-IM subblocks. In
the following, we investigate two different type of detection
algorithms for the OFDM-IM scheme:

i) ML Detector: The ML detector for the OFDM-IM scheme
considers all possible subblock realizations by searching for all
possible subcarrier index combinations and signal constellation

points in order to make a joint decision on the active indices
and the constellation symbols for each subblock by minimizing
the following metric:(

Îβ , ŝβ

)
= arg min

Iβ ,sβ

k∑
γ=1

∣∣∣yβF (iβ,γ)− hβF (iβ,γ) sβ (γ)
∣∣∣2
(15)

where yβF (ξ) and hβF (ξ) for ξ = 1, . . . , n are the received sig-
nals and the corresponding fading coefficients for the subblock
β, i.e.,

yβF (ξ) = yF (n (β − 1) + ξ)

hβF (ξ) = hF (n (β − 1) + ξ) . (16)

The total number of metric calculations performed in (15) is
cMk since Iβ and xβ have c and Mk different realizations,
respectively. Therefore, this ML detector becomes impractical
for larger values of c and k due to its exponentially growing
decoding complexity.

ii) Log-likelihood Ratio (LLR) Detector: The LLR detector
of the OFDM-IM scheme provides the logarithm of the ratio
of a posteriori probabilities of the frequency domain symbols
by considering the fact that their values can be either non-zero
or zero. This ratio, which is given below, gives information on
the active status of the corresponding index for α = 1, . . . , N :

λ (α) = ln

∑M
χ=1 P (x (α) = sχ | yF (α))

P (x (α) = 0 | yF (α))
(17)

where sχ ∈ S . In other words, a larger λ (α) value means
it is more probable that index α is selected by the index
selector at the transmitter, i.e., it is active. Using Bayes’
formula and considering that

∑M
χ=1 p (x (α) = sχ) = k/n and

p (x (α) = 0) = (n− k)/n, (17) can be expressed as

λ (α) = ln (k)− ln (n− k) +
∣∣yF (α)

∣∣2
N0,F

+ ln

(
M∑
χ=1

exp

(
− 1

N0,F

∣∣yF (α)− hF (α) sχ
∣∣2)) .

(18)

In order to prevent numerical overflow, the Jacobian logarithm
[4] can be used in (18). As an example, for k = n/2 and
binary-phase shift keying (BPSK) modulation, (18) simplifies
to

λ (α) = max (a, b) + ln
(
1 + exp (− |b− a|)

)
+

∣∣yF (α)
∣∣2

N0,F
(19)

where

a = − |yF (α)− hF (α)|2 /N0,F

b = − |yF (α) + hF (α)|2 /N0,F . (20)

After calculation of the N LLR values, for each subblock,
the receiver decides on k active indices out of them which
have maximum LLR values. As seen from (18), the decoding
complexity of this detector is linearly proportional to M
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and comparable to that of classical OFDM. This detector
is classified as near-ML since the receiver does not know
the possible values of Iβ . Although this is a desired feature
for higher values of n and k, the detector can decide on a
catastrophic set of active indices which is not included in
Iβ since C (n, k) > c for k > 1, and C (n, k) − c index
combinations are unused at the transmitter.

After detection of the active indices by one of the detectors
presented above at the receiver, the information is passed to
the ”index demapper”, which performs the opposite action
of the ”index selector” block given in Fig. 1, to provide an
estimate of the index-selecting p1 bits. Demodulation of the
constellation symbols is straightforward once the active indices
are determined.

III. IMPLEMENTATION OF THE OFDM-IM SCHEME

In this subsection, we focus on the index selector and index
demapper blocks and provide different implementations of
them. As stated in Section II, the index selector block maps the
incoming bits to a combination of active indices out of C (n, k)
possible candidates, and the task of the index demapper is to
provide an estimate of these bits by processing the detected
active indices which are provided by either the ML or LLR
OFDM-IM detector.

It is worth mentioning that the OFDM-IM scheme can be
implemented without using a bit splitter at the beginning, i.e.,
by using a single group (g = 1) which results in n = N .
However, in this case, C (n, k) can take very large values
which make the implementation of the overall system difficult.
Therefore, instead of dealing with a single OFDM block with
higher dimensions, we split this block into smaller subblocks
to ease the index selection and detection processes at the
transmitter and receiver sides, respectively. The following
mappers are proposed for the new scheme:

i) Look-up Table Method: In this mapping method, a look-
up table of size c is created to use at both transmitter and
receiver sides. At the transmitter, this look-up table provides
the corresponding indices for the incoming p1 bits for each
subblock, and it performs the opposite operation at the re-
ceiver. A look-up table example is presented in Table I for
n = 4, k = 2, and c = 4, where sχ, sζ ∈ S . Since
C (4, 2) = 6, two combinations out of six are discarded.
Although a very efficient and simple method for smaller c
values, this mapping method is not feasible for higher values
of n and k due to the size of the table. We employ this method
with the ML detector since the receiver has to know the set of
possible indices for ML decoding, i.e., it requires a look-up
table. On the other hand, a look-up table cannot be used with
an LLR detector since the receiver cannot decide on active
indices if the detected indices do not exist in the table.

ii) Combinadics Method: The combinational number system
(combinadics) provides a one-to-one mapping between natural
numbers and k-combinations, for all n and k [5], [6], i.e., it
maps a natural number to a strictly decreasing sequence

J = {ck, . . . , c1} (21)

TABLE I
A LOOK-UP TABLE EXAMPLE FOR n = 4, k = 2 AND p1 = 2

Bits Indices subblocks

[0 0] {1, 2}
[
sχ sζ 0 0

]T
[0 1] {2, 3}

[
0 sχ sζ 0

]T
[1 0] {3, 4}

[
0 0 sχ sζ

]T
[1 1] {1, 4}

[
sχ 0 0 sζ

]T
where ck > · · · > c1 ≥ 0. In other words, for fixed n and
k, all Z ∈ [0, C (n, k)− 1] can be presented by a sequence J
of length k, which takes elements from the set {0, . . . , n− 1}
according to the following equation:

Z = C (ck, k) + · · ·+ C (c2, 2) + C (c1, 1) . (22)

As an example, for n = 8, k = 4, C (8, 4) = 70, the following
J sequences can be calculated:

69 = C (7, 4)+C (6, 3)+C (5, 2)+C (4, 1)→ J={7, 6, 5, 4}
68 = C (7, 4)+C (6, 3)+C (5, 2)+C (3, 1)→ J={7, 6, 5, 3}

...
32 = C (6, 4)+C (5, 3)+C (4, 2)+C (1, 1)→ J={6, 5, 4, 1}
31 = C (6, 4)+C (5, 3)+C (4, 2)+C (0, 1)→ J={6, 5, 4, 0}

...
1 = C (4, 4)+C (2, 3)+C (1, 2)+C (0, 1)→ J={4, 2, 1, 0}
0 = C (3, 4)+C (2, 3)+C (1, 2)+C (0, 1)→ J={3, 2, 1, 0} .

The algorithm, which finds the lexicographic ordered J se-
quences for all n, can be explained as follows: start by
choosing the maximal ck that satisfies C(ck, k) ≤ Z, and
then choose the maximal ck−1 that satisfies C(ck−1, k− 1) ≤
Z−C(ck, k) and so on [6]. In our scheme, for each subblock,
we first convert the p1 bits entering the index selector to a
decimal number Z, and then feed this decimal number to the
combinadics algorithm to select the active indices as J + 1.
At the receiver side, after determining active indices, we can
easily get back to the decimal number Ẑ using (22). We then
apply this number to a p1-bit decimal-to-binary converter. We
employ this method with the LLR detector for higher c values
to avoid look-up tables. However, it can give a catastrophic
result at the exit of the decimal-to-binary converter if Ẑ ≥ c;
nevertheless, we use this detector for the increased bit-rate.

IV. PERFORMANCE ANALYSIS OF THE OFDM-IM SCHEME

In this section, we analytically evaluate the average bit error
probability (ABEP) of the OFDM-IM scheme using the ML
decoder with a look-up table.

The channel coefficients in the frequency domain are related
to the coefficients in the time domain by

hF = WNh0
T (23)

where h0
T is the zero-padded version of the vector hT with

length N , i.e.,

h0
T =

[
hT (1) ... hT (ν) 0 ... 0

]T
. (24)
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It can easily be shown that hF (α) , α = 1, . . . , N follows the
distribution CN (0, 1), since taking the Fourier transform of a
Gaussian vector gives another Gaussian vector. However, the
elements of hF are no longer uncorrelated. The correlation
matrix of hF is given as

K = E
{
hFh

H
F

}
= WNE

{
h0
Th

0
T
H
}
WH

N = WH
N ĨWN

(25)
where

Ĩ =

[
1
ν Iν×ν 0ν×(N−ν)

0(N−ν)×ν 0(N−ν)×(N−ν)

]
N×N

(26)

is an all-zero matrix except for its first ν diagonal elements
which are all equal to 1

ν . It should be noted that K becomes
a diagonal matrix if ν = N , which is very unlikely for a
practical OFDM scheme. Nevertheless, since K is a Hermitian
Toeplitz matrix, the pairwise error probability (PEP) events
within different subblocks are identical, and it is sufficient
to investigate the PEP events within a single subblock to
determine the overall system performance. Without loss of
generality, we can choose the first subblock, and introduce
the following matrix notation for the input-output relationship
in the frequency domain:

y = Xh+w (27)

where y =
[
yF (1) · · · yF (n)

]T
, X is an n × n all-

zero matrix except for its main diagonal elements which
are x (1) , . . . , x (n), h =

[
hF (1) · · ·hF (n)

]T
and w =[

wF (1) · · ·wF (n)
]T

. Let us define

Kn = E
{
hhH

}
. (28)

In fact, this is an n × n submatrix centered along the main
diagonal of the matrix K. Thus it is valid for all subblocks.
If X is transmitted and it is erroneously detected as X̂, as we
know that the receiver can make decision errors on both active
indices and constellation symbols, the well-known conditional
pairwise error probability (CPEP) expression for the model in
(27) is given as [7]

P
(
X→ X̂

∣∣∣h) = Q

(√
δ/ (2N0,F )

)
(29)

where δ =
∥∥(X− X̂

)
h
∥∥2
F
= hHAh and

A =
(
X− X̂

)H(
X− X̂

)
. (30)

We can approximate Q (x) quite well using [8]

Q (x) ∼=
1

12
e−x

2/2 +
1

4
e−2x2/3. (31)

Thus, the unconditional PEP (UPEP) of the OFDM-IM scheme
can be obtained by

P
(
X→ X̂

)
∼= Eh

{
1

12
exp (−q1δ) +

1

4
exp (−q2δ)

}
(32)

where q1=1/ (4N0,F ) and q2=1/ (3N0,F ). Let

r1 = rank (Kn) . (33)

Since r1 < n for our scheme, we use the spectral theorem [9]
to calculate the expectation above on defining Kn = QDQH

and h = Qu, where E
{
uuH

}
= D is an r1 × r1 diagonal

matrix. Considering

δ = uHQHAQu (34)

and the p.d.f. of u given by

f (u) =
π−r1

det (D)
exp

(
−uHD−1u

)
(35)

the UPEP can be calculated as

P
(
X→ X̂

)
∼=

π−r1

12 det (D)

∫
u

exp
(
−uH

[
D−1 + q1Q

HAQ
]
u
)
du

+
π−r1

4 det (D)

∫
u

exp
(
−uH

[
D−1 + q2Q

HAQ
]
u
)
du (36)

=
1/12

det (Ir1 + q1DQHAQ)
+

1/4

det (Ir1 + q2DQHAQ)
(37)

=
1/12

det (In + q1QDQHA)
+

1/4

det (In + q2QDQHA)
(38)

=
1/12

det (In + q1KnA)
+

1/4

det (In + q2KnA)
(39)

where (36) and (37) are related via (35), and (38) is obtained
from the identity

det (Ir1 +MN) = det (In +NM) (40)

where the dimensions of M and N are r1 × n and n × r1,
respectively. We have the following remarks:
Remark 1: Let us define

Ai = In + qiKnA = In + qiB (41)

for i = 1, 2. Since

det (Ai) =
∏n

ξ=1
λξ (Ai) =

∏r

ξ=1
(1 + qiλξ (B)) (42)

where r = rank (B), for high SNR values (qi � 1), we can
rewrite (39) as

P
(
X→ X̂

)
w
(
12qr1

r∏
ξ=1

λξ (B)
)−1

+
(
4qr2

r∏
ξ=1

λξ (B)
)−1

.

(43)
As seen from this result, the diversity order of the system is
determined by r, which is upper bounded according to the
rank inequality [9] by

r ≤ min {r1, r2} (44)

where r2 = rank (A). On the other hand we have min r2=1
when the receiver correctly detects all of the active indices
and makes a single decision error out of k M -ary symbols. It
can be shown that r can take values from the interval [1, n].
Remark 2: In order to improve the diversity order of the
system, we can by-pass the M -ary modulations by setting
p = p1 and only transmit data with the indices of the active
subcarriers at the expense of reduced bit rate, since we always
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Fig. 2. BER performance of OFDM-IM with different configurations

guarantee r2 ≥ 2 without M -ary symbol errors.
After the evaluation of the UPEP from (39), the ABEP of

the OFDM-IM can be evaluated by

Pb ≈
1

p nX

∑
X

∑
X̂

P
(
X→ X̂

)
e
(
X, X̂

)
(45)

where nX is the number of the possible realizations of X
and e(X, X̂) represents the number of bit errors for the
corresponding pairwise error event.

V. SIMULATION RESULTS

In this section, we present simulation results for the OFDM-
IM scheme with different configurations and make com-
parisons with classical OFDM. BER performance of these
schemes was evaluated with Monte Carlo simulations. In all
simulations, we assumed the following system parameters:
N = 128, ν = 10 and L = 16. Furthermore, we employed a
BPSK constellation (M = 2) for all systems.

As seen from Fig. 2, at a BER value of 10−5 our new
scheme with n = 4, k = 2 achieves approximately 6 dB
better BER performance than classical OFDM operating at
the same spectral efficiency. This significant improvement in
BER performance can be explained by the improved distance
spectrum of the OFDM-IM scheme, where higher diversity
orders are obtained for the bits carried by the active indices.
For comparison, the theoretical curve obtained from (45) is
also depicted in the same figure for the n = 4, k = 2 scheme,
which uses an ML decoder. As seen from Fig. 2, the theoretical
curve becomes very tight with the computer simulation curve
with increasing SNR values. For higher values of n, we
employ the combinadics method for the index mapping and
demapping operations with the LLR decoder. We observe
that despite their increased data rates, n = 8, k = 4 and
n = 32, k = 16 OFDM-IM schemes exhibits close BER
performance to the low-rate n = 4, k = 2 OFDM scheme.

This can be explained by the fact that for high SNR, the error
performance of the OFDM-IM scheme is dominated by the
PEP events with r = 1 as we discussed in the previous section.

In Fig. 2, we also show the BER performance of the OFDM-
IM scheme which does not employ M -ary modulations (n =
32, k = 16, LLR, w/o M ), and relies on the transmission
of data with subcarrier indices only. As seen from Fig. 2,
this scheme achieves a diversity order of two, as proved in
Section IV, and exhibits the best BER performance for high
SNR values with a slight decrease in the spectral efficiency
compared to classical OFDM employing BPSK modulation.

VI. CONCLUSION

A novel OFDM scheme, which uses the indices of the
active subcarriers to transmit data, has been proposed in this
paper. It has been shown that the proposed scheme achieves
significantly better BER performance than classical OFDM. As
future research, we believe that the implementation of different
transceiver structures could be realized for the OFDM-IM
scheme to increase the data rate as well as to improve the error
performance. The proposed scheme should also be investigated
in real world conditions such as mobility.
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