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Abstract
Multiple-input multiple output orthogonal frequency divi-
sion multiplexing with index modulation (MIMO-OFDM-
IM) is novel multicarrier transmission technique which
has been proposed recently as an alternative to classical
MIMO-OFDM. In this scheme, OFDM with index modu-
lation (OFDM-IM) concept is combined with MIMO trans-
mission to take advantage of the benefits of these two tech-
niques. In this work, the theoretical average bit error prob-
ability (ABEP) of the MIMO-OFDM-IM scheme with max-
imum likelihood (ML) detection is evaluated. A novel low
complexity near-ML detector is proposed to reduce the de-
coding complexity of the brute-force ML detector. It has
been shown via computer simulations that MIMO-OFDM-
IM scheme achieves considerably better error performance
than classical MIMO-OFDM using ML/near-ML detectors
for different MIMO configurations.

1. Introduction
Orthogonal frequency division multiplexing (OFDM) has

become one of the most popular multicarrier transmission tech-
niques for wideband wireless communications in recent years.
Due to its advantages such as efficient implementation and ro-
bustness to frequency selective fading channels, OFDM has
been included in many standards such as Long Term Evolu-
tion (LTE), IEEE 802.11x wireless local area network (LAN),
digital video broadcasting (DVB) and IEEE 802.16e-WiMAX.
Considering the advantages of multiple-input multiple-output
(MIMO) systems over single antenna systems such as improved
data rate and energy efficiency, the combination of OFDM and
MIMO transmission techniques appears as a strong alternative
for future wireless standards such as 5G and beyond.

OFDM with index modulation (OFDM-IM) [1] is a novel
multicarrier transmission scheme which transmits the informa-
tion not only by the data symbols selected from M -ary signal
constellations, but also by the indices of the active subcarriers,
which are activated according to the incoming information bits.
Unlike classical OFDM, the number of active subcarriers can
be adjusted in the OFDM-IM scheme, and this flexibility in the
system design provides an interesting trade-off between perfor-
mance and spectral efficiency. Index modulation concept for
OFDM has attracted significant attention from the researchers
since its widespread introduction in [1] and this concept has
been investigated in some very recent studies [2–9]. A tight
approximation for the error performance of OFDM-IM is pro-
posed in [2]. By the selection of active subcarriers in a more
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flexible way to further increase the spectral efficiency, OFDM-
IM scheme is generalized in [3]. The problem of the selection
of optimal number of active subcarriers is investigated in [4]
and [5]. In [6], subcarrier level block interleaving is introduced
for OFDM-IM in order to improve its error performance by ben-
efiting from uncorrelated subcarriers. In [7], OFDM-IM with
interleaved grouping is adapted to vehicular communications.
More recently, OFDM-IM is combined with coordinate inter-
leaving principle in [8] to obtain additional diversity gains.

MIMO-OFDM-IM, which is obtained by the combination
of MIMO and OFDM-IM transmission techniques, is a recently
proposed novel multicarrier transmission technology and ap-
pears as a strong alternative to classical MIMO-OFDM for 5G
networks [9]. In this scheme, each transmit antenna transmits
its own OFDM-IM frame to boost the data rate and at the re-
ceiver side, these frames are separated and demodulated using a
novel sequential minimum mean square error (MMSE) detector.

In this study, we deal with the maximum likelihood (ML)
detection performance of the MIMO-OFDM-IM scheme to ben-
efit from the diversity gain of MIMO transmission. The av-
erage bit error probability (ABEP) of the MIMO-OFDM-IM
scheme is derived by the calculation of pairwise error proba-
bility (PEP) of the MIMO-OFDM-IM subblocks. In order to
reduce the decoding complexity of the brute-force ML detector
of the MIMO-OFDM-IM scheme, a low complexity near-ML
detector is proposed, which is shown to provide better bit error
rate (BER) performance than classical vertical Bell Lab layered
space-time (V-BLAST) type MIMO-OFDM for different con-
figurations.

The rest of the paper is organized as follows. In Section 2,
our system model is presented. In Section 3, performance anal-
ysis of MIMO-OFDM-IM is given. The near-ML detection of
MIMO-OFDM-IM is proposed in Section 4. Simulation results
are provided in Section 5 and Section 6 concludes the paper.

2. System Model of MIMO-OFDM-IM
The block diagram of the MIMO-OFDM-IM transceiver

is shown in Fig. 1. A MIMO system with T transmit and
R receive antennas is considered. A total of mT informa-
tion bits processed by the MIMO-OFDM-IM transmitter for
the transmission of each MIMO-OFDM-IM frame. These
mT information bits are first divided into T groups and the
corresponding m bits are processed in each branch of the
transmitter by the OFDM index modulators. The incoming
m information bits are used to obtain the NF × 1 OFDM-
IM block xt =

[
xt(1) xt(2) · · · xt(NF )

]T
, t =

1, 2, . . . , T in each branch of the transmitter, where NF is
the size of the fast Fourier transform (FFT) and xt(nf ) ∈
{0,S} , nf = 1, 2, . . . , NF , where S denotes M -ary sig-
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Figure 1. Transceiver Structure of the MIMO-OFDM-IM Scheme for a T ×R MIMO System

Table 1. Reference Look-up Table for N = 4,K = 2 and
p1 = 2

Bits Indices OFDM-IM subblocks (xgt )
T

[0 0] {1, 3}
[
s1 0 s2 0

]
[0 1] {2, 4}

[
0 s1 0 s2

]
[1 0] {1, 4}

[
s1 0 0 s2

]
[1 1] {2, 3}

[
0 s1 s2 0

]
nal constellations. According to the OFDM-IM principle [1],
these m bits are split into G groups each containing p =
p1 + p2 bits, which are used to form OFDM-IM subblocks
xgt =

[
xgt (1) xgt (2) · · · xgt (N)

]T
, g = 1, 2, . . . , G of

length N = NF /G, where xgt (n) ∈ {0,S} , n = 1, 2, . . . , N .
According to the corresponding p1 = blog2

(
N
K

)
c bits, only K

out of N available subcarriers are selected as active by the in-
dex selector at each subblock g, while the remaining N − K
subcarriers are inactive and set to zero. On the other hand, the
remaining p2 = K log2(M) bits are mapped onto the consid-
ered M -ary signal constellation such as M -PSK or M -QAM
at each subblock. Therefore, unlike classical MIMO-OFDM,
xt, t = 1, 2, . . . , T contains some zero terms whose positions
carry information for MIMO-OFDM-IM.

In this study, active subcarrier index selection is performed
by a reference look-up table at OFDM index modulators of
the transmitter. The considered reference look-up table for
N = 4,K = 2 is given in Table I, where sk ∈ S for
k = 1, 2, . . .K. As seen from Table I, for N = 4 and K = 2,
the incoming p1 = 2 bits can be used to select the indices of the
two active subcarriers out of four available subcarriers accord-
ing to the reference look-up table of size C = 2p1 = 4, where
a total of CMK possible subblock realizations are attainable
considering active indices and M -ary symbols.

In each branch of the transmitter, the OFDM index mod-
ulators obtain the OFDM-IM subblocks first and then con-
catenate these G subblocks to obtain the main OFDM blocks
xt, t = 1, 2, . . . , T . In order to transmit the elements of the
subblocks from uncorrelated fading channels, G × N block
interleavers (Π) are used at the transmitter. The block inter-
leaved OFDM-IM frames x̃t, t = 1, 2, . . . , T are processed
by the inverse FFT (IFFT) operators to obtain time-domain
OFDM-IM frames q̃t, t = 1, 2, . . . , T . We assume that the
time-domain OFDM symbols are normalized to have unit en-
ergy, i.e., E

{
q̃Ht q̃t

}
= NF for all t where E {·} stands for

expectation. After the addition of Cp cyclic prefix samples to
the beginning of the time-domain frames, parallel-to-serial and
digital-to-analog conversions, the resulting signals sent simul-

taneously from T transmit antennas over a frequency selective
Rayleigh fading MIMO channel. For the considered MIMO
channel, gr,t ∈ CL×1 represents the L-tap wireless channel be-
tween the transmit antenna t and the receive antenna r, whose
elements are independent and identically distributed (i.i.d.) with
CN (0, 1

L
), where CN (0, σ2) represents circularly symmetrical

complex Gaussian distribution with variance σ2. Assuming the
wireless channels remain constant during the transmission of
a MIMO-OFDM-IM frame and the length of the cyclic prefix
is greater than number of channel taps (Cp > L), after re-
moval of the cyclic prefix and performing FFT operations in
each branch of the receiver, the input-output relationship of the
MIMO-OFDM-IM scheme in the frequency domain is obtained
as

ỹr =
∑T

t=1
diag (x̃t) hr,t + wr (1)

for r = 1, 2, . . . , R, where diag(·) denotes a diagonal matrix,
ỹr =

[
ỹr(1) ỹr(2) · · · ỹr(NF )

]T is the vector of the
received signals for receive antenna r, hr,t ∈ CNF×1 repre-
sents the frequency response of the wireless channel between
the transmit antenna t and receive antenna r, and wr ∈ CNF×1

is the vector of noise samples. The elements of hr,t and wr

follow CN (0, 1) and CN (0, N0,F ) distributions, respectively,
where N0,F denotes the variance of the noise samples in the
frequency domain, which is related to the variance of the noise
samples in the time domain as N0,T = (NF /(KG))N0,F . We
define the signal-to-noise ratio (SNR) as SNR = Eb/N0,T

where Eb = (NF + Cp)/m [joules/bit] is the average trans-
mitted energy per bit. The spectral efficiency of the MIMO-
OFDM-IM scheme is mT/(NF + Cp) [bits/s/Hz].

The received signals after block deinterleaving operation
are obtained for each receive antenna r as follows:

yr =
∑T

t=1
diag (xt) h̆r,t + w̆r (2)

where h̆r,t and w̆r are deinterleaved versions of hr,t and wr ,
respectively.

The detection of the MIMO-OFDM-IM scheme
can be performed by the separation of the re-
ceived signals in (2) for each subblock g =

1, 2, . . . , G as yr =
[
(y1
r)
T · · · (yGr )T

]T , xt =[
(x1
t )
T · · · (xGt )T

]T , h̆r,t =
[
(h̆1
r,t)

T · · · (h̆Gr,t)
T
]T

,

w̆r=
[
(w̆1

r)
T · · · (w̆G

r )T
]T , for which we obtain

ygr =
∑T

t=1
diag (xgt ) h̆gr,t + w̆g

r (3)
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for r = 1, 2, . . . , R, where ygr =[
ygr (1) ygr (2) · · · ygr (N)

]T is the vector of
the received signals at receive antenna r for sub-
bblock g, xgt =

[
xgt (1) xgt (2) · · · xgt (N)

]T
is the OFDM-IM subblock g for transmit antenna
t, h̆gr,t =

[
h̆gr,t(1) h̆gr,t(2) · · · h̆gr,t(N)

]T and

w̆g
r =

[
w̆gr (1) w̆gr (2) · · · w̆gr (N)

]T . The use of
the block interleaving ensures that E

{
h̆gr,t(h̆

g
r,t)

H
}

= IN , i.e.,
the subcarriers in a subblock are affected from uncorrelated
wireless fading channels.

A simple solution to the detection problem of (3) is the
use of maximum likelihood (ML) detector which can be im-
plemented for each subblock g as

(x̂g1, . . . , x̂
g
T ) = arg min

(x
g
1 ,...,x

g
T )

R∑
r=1

∥∥∥∥ygr− T∑
t=1

diag (xgt ) h̆gr,t

∥∥∥∥2

.

(4)
As seen from (4), the ML detector has to make a joint search
over all transmit antennas due the interference between the sub-
blocks of different transmit antennas. Since xgt has CMK dif-
ferent realizations, the total decoding complexity of the ML
detector in (4), in terms of metric calculations, is (CMK)T(
∼ O

(
MKT

))
per subblock.

3. Performance Analysis of
MIMO-OFDM-IM with ML Detection
In this section, the ABEP of the MIMO-OFDM-IM scheme

is derived by the PEP calculation for MIMO-OFDM-IM sub-
blocks. Since the pairwise error (PE) events within different
subblocks are identical, it is sufficient to investigate the PE
events within a single subblock to determine the overall system
performance. For the evaluation of PEP, the following signal
model is obtained from (3) for subcarrier n of subblock g:

yg1(n)
yg2(n)

...
ygR(n)

=

h̆g1,1(n) · · · h̆g1,T (n)

h̆g2,1(n) · · · h̆g2,T (n)
...

. . .
...

h̆gR,1(n) · · · h̆gR,T (n)



xg1(n)
xg2(n)

...
xgT (n)

+

w̆g1(n)
w̆g2(n)

...
w̆gR(n)


ȳgn = Hg

nx̄gn + w̄g
n (5)

for n = 1, 2, . . . , N and g = 1, 2, . . . , G, where ȳgn is the re-
ceived signal vector, Hg

n is the corresponding channel matrix
which contains the channel coefficients between transmit and
receive antennas and assumed to be perfectly known at the re-
ceiver, x̄gn is the data vector which contains the simultaneously
transmitted symbols from all transmit antennas and can have
zero terms due to index selection in each branch of the trans-
mitter and w̄g

n is the noise vector. Stacking the received signals
forN consecutive subcarriers for a given subblock g, we obtain

ȳg1
ȳg2
...

ȳgN

 =


Hg

1 0 . . . 0
0 Hg

2 . . . 0
...

. . .
...

0 0 . . . Hg
N




x̄g1
x̄g2
...

x̄gN

+


w̄g

1

w̄g
2

...
w̄g
N


yg = Hgxg + wg (6)

where 0 denotes the all-zero matrix with R × T dimensions,
yg ∈ CRN×1 is the vector of stacked received signals for the
corresponding subblock, Hg ∈ CRN×TN is the block-diagonal
channel matrix, xg ∈ CTN×1 is the equivalent data vector

which has (CMK)T possible realizations according to index
modulation and wg ∈ CRN×1 is the noise vector. Using the
matrix form given in (6), the ML detection of MIMO-OFDM-
IM for each subblock g can also be performed as

x̂g = arg min
xg

∥∥yg −Hgxg
∥∥2
. (7)

Considering the signal model given in (6), for a given channel
matrix Hg , if xg is transmitted and it is erroneously detected as
x̂g , the conditional PEP (CPEP) can be calculated as

P (xg → x̂g |Hg) = P
(∥∥yg −Hgxg

∥∥2
>
∥∥yg −Hgx̂g

∥∥2
)
.

(8)
After some algebra, the CPEP of the MIMO-OFDM-IM scheme
is obtained as

P (xg → x̂g |Hg)

= P
(∥∥Hgxg

∥∥2−
∥∥Hgx̂g

∥∥2−2<
{

(yg)HHg (xg − x̂g)
}
>0
)

= P
(
−
∥∥Hg (xg − x̂g)

∥∥2−2<
{

(wg)HHg (xg − x̂g)
}
>0
)

= P (D > 0) (9)

where D is Gaussian distributed with mean
E {D} = −

∥∥Hg (xg − x̂g)
∥∥2 and variance Var {D} =

2N0,F

∥∥Hg (xg − x̂g)
∥∥2, for which we obtain

P (xg → x̂g |Hg) = Q

√∥∥Hg (xg − x̂g)
∥∥2

2N0,F

 (10)

where Q(·) denotes the Q-function. Using the alternative form
of the Q-function [10], (10) can be rewritten as

P (xg → x̂g |Hg) =
1

π

∫ π/2

0

exp

(
−
∥∥Hg (xg − x̂g)

∥∥2

4N0,F sin2 θ

)
dθ.

(11)
Integrating the CPEP in (11) over the probability density func-
tion (pdf) of Γ =

∥∥Hg (xg − x̂g)
∥∥2, the unconditional PEP

(UPEP) of the MIMO-OFDM-IM scheme is obtained as

P (xg → x̂g) =
1

π

∫ π/2

0

MΓ

(
− 1

4N0,F sin2 θ

)
dθ (12)

where MΓ(t) is the moment generating function (mgf) of Γ.
Expressing Γ in quadratic form as

Γ =

N∑
n=1

∥∥Hg
n

(
x̄gn − ˆ̄x

g
n

) ∥∥2
=

N∑
n=1

R∑
r=1

hgn,rQ
g
n(hgn,r)

H

(13)
where hgn,r ∈ C1×T is rth row of Hg

n and Qg
n =(

x̄gn − ˆ̄x
g
n

) (
x̄gn − ˆ̄x

g
n

)H . According to the quadratic form of
Γ given in (13), its mgf is obtained as [11]

MΓ(t) =
∏N

n=1
[det (IT − tLQg

n)]−R

=
∏N

n=1

(
1− t

∥∥x̄gn − ˆ̄x
g
n

∥∥2
)−R

(14)

since hgn,r’s are i.i.d. for all r and n, L = E
{

(hgn,r)
Hhgn,r

}
=

IT and rank(Qg
n) = 1. Finally, combining (12) and (14), the

UPEP of the MIMO-OFDM-IM scheme is obtained as

P (xg → x̂g) =
1

π

∫ π/2

0

N∏
n=1

(
sin2 θ

sin2 θ +

∥∥x̄
g
n−ˆ̄xg

n

∥∥2

4N0,F

)R
dθ.

(15)
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Please note that the integral given in (15) has closed form solu-
tions in Appendix 5A of [10] for different N values.
Remark 1: Diversity order of the MIMO-OFDM-IM scheme
with ML detection is equal to R, since for the worst case PE
events in which there are no active indices errors and a sin-
gle M -ary symbol is erroneously detected in x̂, we obtain∥∥x̄n − ˆ̄xn

∥∥2 6= 0 for only a single n value. On the other
hand, the distance spectrum of the MIMO-OFDM-IM is im-
proved due to the error events in which there are errors in active
indices since these PE events have lower occurrence probabili-
ties.
Remark 2: After the evaluation of the UPEP, the ABEP of the
MIMO-OFDM-IM scheme can be obtained by the asymptoti-
cally tight union upper bound as

Pb ≤
1

nbn
g
x

∑
xg

∑
x̂g
P (xg → x̂g) e(xg, x̂g) (16)

where nb = pnT is the total number of information bits carried
by xg , nxg = (CMK)T is the total number of possible real-
izations of xg and e(xg, x̂g) is the number of bit errors for the
corresponding PE event (xg → x̂g).

4. Simplified Near-ML Detection of
MIMO-OFDM-IM

The total decoding complexity of the brute-force ML de-
tector given in (4) and (7) in terms of metric calculations is
∼ O(MKT ), which is considerably higher than that of clas-
sical MIMO-OFDM, whose complexity is ∼ O(MT ). In this
section, we propose a near-ML detector for the MIMO-OFDM-
IM scheme which has a comparable decoding complexity with
the classical MIMO-OFDM ML detector.

The size of the search space of the classical MIMO-
OFDM ML detector is MT due to the interference between
different transmit antennas. On the other hand, the size of
the search space of the MIMO-OFDM-IM ML detector be-
comes (CMK)T since not only different transmit antennas
but also different subcarriers in a subblock interfere with each
other. The ML detector in (4) maximizes the joint conditional
p.d.f. of p (yg1 , . . . ,y

g
R |x

g
1, . . . ,x

g
T ), i.e., jointly searches for

xg1, . . . ,x
g
T using the reference look-up table. On the other

hand, the proposed near-ML detector calculates a probabilis-
tic measure for each element of the reference look-up table for
a given transmit antenna, therefore, it reduces the size of the
search space considerably. For this purpose, the near-ML de-
tector considers the model in (5) and calculates the following
occurrence probability for each element of the reference look-
up table (xgt ) for a given transmit antenna t:1

P (xgt ) =

N∏
n=1

P (xgt (n)) =

N∏
n=1

∑
x̄
g
n,x̄

g
n(t)=x

g
t (n)

P (x̄gn | ȳgn)

(17)
where x̄gn(t) is tth element of x̄gn ∈ CT×1 and the correspond-
ing conditional probability values are calculated as

P (x̄gn | ȳgn) =
f (ȳgn | x̄gn)P (x̄gn)

f (ȳgn)
=

f (ȳgn | x̄gn)P (x̄gn)∑
x̄
g
n

f (ȳgn | x̄gn)P (x̄gn)

(18)

1For notational simplicity, the realizations of the random vec-
tors/variables are dropped in (17)-(19). See Example 1 for more details.

and conditioned on x̄gn, ȳgn has multivariate complex Gaussian
distribution with the following pdf:

f (ȳgn | x̄gn) =
1

(πN0,F )R
exp

(
−‖ȳgn −Hg

nx̄gn‖2 /N0,F

)
.

(19)
After the calculation ofCMK probability values for each trans-
mit antenna, the near-ML detector decides on the most likely
element of the look-up table as

x̂gt = arg maxx
g
t
P (xgt ) . (20)

As seen from (17)-(19), for the calculation of P (xgt ) values,
a search over the possible realizations of x̄gn has to be made,
which reduces the size of the search space to (M + 1)T since
x̄gn(t) ∈ {0,S} and a total of N(M + 1)T metric calculations
are required. The following example shows the steps of the
near-ML detector.
Example 1: Consider the MIMO-OFDM-IM scheme with the
following system parameters: T = 2,M = 2, N = 4,K = 2.
For these values, the reference look-up table contains CMK =
4 × 22 = 16 elements and the decoding complexity of the
brute-force ML detector becomes 162 = 256, which is con-
siderably higher than that of classical MIMO-OFDM. In this
case, (x̄gn)T has (M + 1)T = 9 possible realizations:

[
0 0

]
,[

0 1
]
,
[
0 −1

]
,
[
1 0

]
,
[
1 1

]
,
[
1 −1

]
,
[
−1 0

]
,[

−1 1
]

and
[
−1 −1

]
, with the following probabili-

ties: 0.25, 0.125, 0.125, 0.125, 0.0625, 0.0625, 0.125, 0.0625
and 0.0625, respectively.

First, the near-ML detector calculates and stores the prob-
abilities P (x̄gn | ȳgn) using the received signals ȳgn and pos-
sible x̄gn vectors for n = 1, 2, 3, 4, which results in only
N(M + 1)T = 4 × 9 = 36 metric calculations. As an ex-
ample, for n = 1, nine probability values of P (x̄g1 | ȳ

g
1) are

calculated and stored using (18)-(19).
Second, the occurrence probability of the each element

of the reference look-up table is calculated from (17). Con-
sider that we want to calculate the probability of P (xg1 =[
1 0 −1 0

]T
), where

[
1 0 −1 0

]T is selected from
the look-up table. According to (17), we have

P (xg1 =
[
1 0 −1 0

]T
)

= P (xg1(1) = 1)P (xg1(2) = 0)P (xg1(3) = −1)P (xg1(4) = 0)

where

P (xg1(1) = 1) =
∑

x̄
g
1 ,x̄

g
1(1)=1

P (x̄g1 | ȳ
g
1) = P

(
x̄g1 =

[
1 0

]T | ȳg1)
+ P

(
x̄g1 =

[
1 1

]T | ȳg1)+ P
(
x̄g1 =

[
1 −1

]T | ȳg1) ,
P (xg1(2) = 0) =

∑
x̄
g
2 ,x̄

g
2(1)=0

P (x̄g2 | ȳ
g
2) = P

(
x̄g2 =

[
0 0

]T | ȳg2)
+ P

(
x̄g2 =

[
0 1

]T | ȳg2)+ P
(
x̄g2 =

[
0 −1

]T | ȳg2) ,
P (xg1(3) =−1) =

∑
x̄
g
3 ,x̄

g
3(1)=−1

P (x̄g3 | ȳ
g
3)=P

(
x̄g3 =

[
−1 0

]T | ȳg3)
+ P

(
x̄g3 =

[
−1 1

]T | ȳg3)+ P
(
x̄g3 =

[
−1 −1

]T | ȳg3) ,
P (xg1(4) = 0) =

∑
x̄
g
4 ,x̄

g
4(1)=0

P (x̄g4 | ȳ
g
4) = P

(
x̄g4 =

[
0 0

]T | ȳg4)
+ P

(
x̄g4 =

[
0 1

]T | ȳg4)+ P
(
x̄g4 =

[
0 −1

]T | ȳg4) .
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Figure 2. Performance comparison of classical MIMO-OFDM
and MIMO-OFDM-IM for 2× 2 MIMO (1.94 bits/s/Hz)
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Figure 3. Performance comparison of classical MIMO-OFDM
and MIMO-OFDM-IM for 4× 4 MIMO (3.88 bits/s/Hz)

Similarly, P (xg2 =
[
1 0 −1 0

]T
) can be calculated con-

sidering the second elements of x̄gn. Finally, the most likely ele-
ment of the look-up table is determined from (20) after the cal-
culation of sixteen probability values, where

∑
x
g
t
P (xgt ) = 1.

5. Simulation Results
In this section, we provide computer simulation results for

MIMO-OFDM-IM and classical V-BLAST type MIMO-OFDM
schemes using ML detectors and employing BPSK (M = 2)
modulation. We consider two different T × R MIMO config-
urations: 2 × 2 and 4 × 4. The following OFDM parameters
are assumed in all Monte Carlo simulations: NF = 512, Cp =
16, L = 10.

In Fig. 2, we compare the BER performance of the MIMO-
OFDM-IM scheme for N = 4,K = 2 with classical MIMO-
OFDM using ML and MMSE detectors for a 2 × 2 MIMO
system. The BER performance of the MMSE detector of the
MIMO-OFDM-IM scheme, which is proposed in [9], is pro-
vided as a reference to the ML detector. As seen from Fig. 2,
using ML detection, a diversity order of two is achieved for both

schemes, and MIMO-OFDM-IM scheme provides a significant
BER performance improvement compared to classical MIMO-
OFDM. It should be noted that the proposed near-ML detector
outperformed by the brute-force ML detector by a small margin;
however, it still exhibits better BER performance than the clas-
sical MIMO-OFDM. We also observe that the derived theoreti-
cal upper bound in (16) becomes very tight with the computer
simulation curve as the SNR increases.

In Fig. 3, we extend our simulations to a 4× 4 MIMO sys-
tem and compare the BER performance of the MIMO-OFDM-
IM scheme with classical MIMO-OFDM. As seen from Fig.
3, the MIMO-OFDM-IM scheme still maintains its advantage
over classical MIMO-OFDM using either of the MMSE, ML or
near-ML detectors and the theoretical bound fits well with the
computer simulation curve.

The better BER performance of the MIMO-OFDM-IM
scheme in Figs. 2-3 can be explained by its improved distance
spectrum in which higher diversity orders are obtained for the
error events corresponding to active indices errors.

6. Conclusions
In this paper, we have proposed ML and near-ML detectors

for the recently introduced MIMO-OFDM-IM scheme to im-
prove its error performance compared to MMSE based detec-
tion. The ABEP upper bound of the MIMO-OFDM-IM scheme
with ML detection has been derived and it has been shown that
the derived theoretical upper bound can be used as an efficient
tool to predict the BER performance of the MIMO-OFDM-
IM scheme. It has been shown via computer simulations that
MIMO-OFDM-IM scheme can provide significant improve-
ments in BER performance over classical MIMO-OFDM using
different type of detectors and MIMO configurations.
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