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Abstract—Multiple-input multiple-output orthogonal frequen-
cy division multiplexing with index modulation (MIMO-OFDM-
IM), which provides a flexible trade-off between spectral ef-
ficiency and error performance, is recently proposed as a
promising transmission technique for energy-efficient 5G wireless
communication systems. However, due to the dependence of
subcarrier symbols within each subblock and the strong inter-
channel interference, it is challenging to detect the transmitted
data effectively while imposing low computational burden to the
receiver. In this paper, we propose a low-complexity detector
based on the sequential Monte Carlo (SMC) theory for the
detection of MIMO-OFDM-IM signals. The proposed detector,
which draws samples based on the importance weights at the
subblock level, achieves near-optimal error performance with
considerably reduced computational complexity. Simulation and
numerical results in terms of bit error rate (BER) and number
of complex multiplications (NCM) corroborate the superiority of
the proposed detector.

I. INTRODUCTION

Recently, a novel MIMO scheme called spatial modula-

tion (SM) has emerged as an appealing candidate to fulfill

the spectral and energy efficiency requirements of the next

generation wireless communication systems [1], [2]. In SM,

information bits are conveyed not only by the modulated

symbol, but also by the index of the active transmit antenna.

By replacing the antenna indices in the MIMO system with

the subcarrier indices of the orthogonal frequency division

multiplexing (OFDM) signal, the concept of SM has been

successfully transplanted to OFDM systems [3], [4]. As the

representative frequency-domain extension of SM, OFDM

with index modulation (OFDM-IM), which activates a subset

of subcarriers to carry the modulated symbols simultaneously,

is proposed in [4]. In OFDM-IM, the information is embedded

in both subcarrier indices and M -ary constellation domains.

Compared with classical OFDM, OFDM-IM provides a more

flexible trade-off between the spectral efficiency and the error

performance, and has the potential to achieve much better bit

error rate performance for low-to-mid spectral efficiencies [4].

Owing to its interesting properties and superior BER perfor-

mance, OFDM-IM has attracted considerable research interest

over the past few years [5]–[11]. A subcarrier-level interleav-

ing method is proposed for OFDM-IM to attain coding gains
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from uncorrelated subcarriers [5]. In [6], OFDM-IM coupled

with the coordinate interleaving principle is proposed to ex-

plore potential diversity gains of OFDM-IM. By extending the

index modulation to include both the in-phase and quadrature

dimensions, a generalization of OFDM-IM is proposed with a

low-complexity maximum-likelihood (ML) detector [7]. While

the performance of OFDM-IM is analyzed in terms of ergodic

achievable rate [8] and average mutual information [9].

More recently, by combining OFDM-IM with MIMO trans-

mission techniques, a novel scheme called MIMO-OFDM-IM

is presented in [10], which exhibits the potential to surpass

the classical MIMO-OFDM. Then, the error performance of

the MIMO-OFDM-IM scheme is investigated theoretically for

different types of detectors in [11]. In this scheme, since each

transmit antenna transmits an independent OFDM-IM block,

its spectral efficiency can reach T times that of OFDM-IM,

where T denotes the number of transmit antennas. However,

due to the dependence of the subcarrier symbols within each

OFDM-IM subblock and the strong inter-channel interference

(ICI) between the transmit antennas of the MIMO-OFDM-IM

system, it becomes much more challenging to detect the active

subcarrier indices and modulated symbols. Although the ML

detector is able to achieve optimal performance, it necessitates

an exhaustive search with prohibitive computational complex-

ity, which makes itself impractical for MIMO-OFDM-IM. To

reduce the detection complexity, a log-likelihood ratio (LLR)

based detector coupled with the minimum mean square error

(MMSE) filter is then proposed for the detection of MIMO-

OFDM-IM, which, however, suffers from a significant error

performance loss compared to the ML detector. Therefore, the

design of the low-complexity detector for MIMO-OFDM-IM

with near-optimal error performance remains an open as well

as challenging research problem.

In this paper, in order to achieve near-optimal error per-

formance while maintaining low computational complexity,

a novel detection algorithm based on the sequential Monte

Carlo (SMC) theory is proposed for MIMO-OFDM-IM. By

regarding each OFDM-IM subblock as a super modulated

symbol drawn from a large finite set, the proposed detector

draws samples independently at the subblock level to achieve

near-optimal performance with substantially reduced complex-

ity. Computer simulation and numerical results in terms of

BER and NCM corroborate the superiority of our proposed

detection method.

Notation: Upper and lower case boldface letters denote

matrices and column vectors, respectively. (·)T
, (·)H

, and (·)−1
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Fig. 1. Block diagram of MIMO-OFDM-IM transmitter.

stand for transpose, Hermitian transpose, and matrix inversion

operations, respectively. (·)(b) denotes the b-th particle drawn

by the SMC sampling, its associated importance weight, or

its prediction distribution. (·)[i] denotes the hypothesis drawn

with the sample being the i-th element of a finite set, its

associated importance weight, or its prediction distribution.

diag{x} returns a diagonal matrix whose diagonal elements

are included in x. | · | denotes the absolute value if applied to

a complex number or the cardinality if applied to a set. The

probability density function (PDF) and the probability mass

function (PMF) are denoted by p (·) and P (·), respectively.

‖·‖p denotes the �p-norm and ∅ represents the empty set. �·�
denotes the floor function and count(·) returns the number

of non-zero elements in a set or a vector.
(
N
K

)
denotes the

binomial coefficient, which is defined to be zero if N < K.

II. OVERVIEW OF MIMO-OFDM-IM

In this paper, we consider a MIMO-OFDM-IM system

equipped with T transmit and R receive antennas [10], [11].

The block diagram of the MIMO-OFDM-IM transmitter is

depicted in Fig. 1. Each MIMO-OFDM-IM frame is comprised

of a total number of mT incoming data bits. These bits

are divided into T groups, each of which contains m bits

for the generation of an OFDM-IM block to be transmitted

from a transmit antenna. These m bits are further divided

into G subgroups, each of which consists of p bits, i.e.,

m = Gp. Assuming NF available subcarriers of each block,

each subgroup is then used to generate an OFDM-IM subblock

consisting of N = NF /G subcarriers.

Unlike classical OFDM, which maps all data bits to the

constellation points for all subcarriers, OFDM-IM separates p
bits of each subblock into two parts for different purposes: the

first part with p1 = �log2
(
N
K

)� bits is used to select K active

subcarriers, while the remaining N −K subcarriers are set to

be idle;1 the second part with p2 = K log2M bits is mapped

into K modulated symbols for the K active subcarriers via

M -ary modulation. The mapping between the p1 bits and the

subcarrier combination patterns can be implemented by using

1Note that to modulate an integer number of bits, only NC = 2p1

subcarrier combination patterns are permitted and the remaining
(N
K

)−NC

patterns are considered to be illegal.

a look-up table or the combinatorial method [4]. Consider

the g-th (1 ≤ g ≤ G) OFDM-IM subblock at the t-th
(1 ≤ t ≤ T ) transmit antenna. Accordingly, the output of

the first part is the indices of K active subcarriers, which

are represented by the set Jg
t = {jgt (1), . . . , jgt (K)}, where

the elements of Jg
t are sorted in an ascending order, i.e.,

1 ≤ jgt (1) < · · · < jgt (K) ≤ N . The output of the second

part is K modulated symbols {sgt (n)}n∈Jg
t

, where sgt (n) is

drawn from a complex alphabet and the normalization of

signal constellation is assumed. Therefore, the g-th OFDM-IM

subblock element at the t-th transmit antenna can be expressed

as xg
t = [xgt (1) x

g
t (2) · · · xgt (N)]

T
, where

xgt (n) =

{
sgt (n), n ∈ Jg

t

0, otherwise
. (1)

After generating all OFDM-IM subblocks, each OFDM-IM

block is created by concatenating G OFDM-IM subblocks in

each branch of the transmitter, which is denoted by xt =[(
x1
t

)T (
x2
t

)T · · · (
xG
t

)T
]T

� [xt(1) xt(2) · · · xt(NF )]
T
,

where 1 ≤ t ≤ T . To fully benefit from the frequency-

selective fading, a G×N block interleaver is employed in each

branch of the transmitter. Before transmission, each OFDM-

IM block is first transformed into the time-domain signal

block by employing an NF -point inverse discrete Fourier

transform (IDFT), and then appended with a CP longer than

the maximum delay spread of the channel.
After passing through the frequency-selective MIMO chan-

nel, the CP is removed and an NF -point discrete Fourier

transform (DFT) followed by a G×N block deinterleaver is

employed at each receive antenna to obtain the received block

in the frequency domain. Specifically, for the r-th (1 ≤ r ≤ R)

receive antenna, the g-th (1 ≤ g ≤ G) received subblock after

block deinterleaving can be expressed as

yg
r =

√
ρ

T

√
N

K

T∑
t=1

diag
{
hg
r,t

}
xg
t +wg

r (2)

where yg
r � [ygr (1) y

g
r (2) · · · ygr (N)]

T
, ρ is signal-to-noise

ratio (SNR) per receive antenna, hg
r,t denotes the correspond-

ing channel vector of dimensions N × 1 which contains the

channel frequency responses (CFRs) for the g-th OFDM-IM

subblock, and wg
r ∼ Nc(0, IN ) is the additive white Gaussian

noise (AWGN) vector. Furthermore, for the n-th (1 ≤ n ≤ N )

subcarrier of the g-th (1 ≤ g ≤ G) OFDM-IM subblock, the

signal vector observed at the receiver can be collected as⎡⎢⎢⎢⎣
yg1(n)
yg2(n)

...

ygR(n)

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

ȳg
n

=

√
ρ

T

√
N

K

⎡⎢⎢⎢⎣
hg1,1(n) hg1,2(n) . . . hg1,T (n)

hg2,1(n) hg2,2(n) . . . hg2,T (n)
...

...
. . .

...

hgR,1(n) hgR,2(n) . . . hgR,T (n)

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

H̄g
n

×

⎡⎢⎢⎢⎣
xg1(n)
xg2(n)

...

xgT (n)

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

x̄g
n

+

⎡⎢⎢⎢⎣
wg

1(n)
wg

2(n)
...

wg
R(n)

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

w̄g
n

(3)
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where ȳg
n is the received signal vector, H̄g

n is the corre-

sponding channel matrix which contains the CFRs between

the transmit and receive antennas, x̄g
n is the data vector

which contains the simultaneously transmitted symbols from

all transmit antennas, and w̄g
n ∼ Nc(0, IR) is an R× 1 AWGN

vector whose elements have zero mean and unit variance. After

applying the matched filter and noise whitening to (3), the

output can be written as

ỹg
n� (Ag

n)
−1/2 (

H̄g
n

)H
ȳg
n=

√
ρ

T

√
N

K
(Ag

n)
1/2

x̄g
n + w̃g

n (4)

where Ag
n =

(
H̄g

n

)H
H̄g

n, and w̃g
n = (Ag

n)
−1/2 (

H̄g
n

)H
w̄g

n is

a T × 1 AWGN vector whose elements have zero-mean and

unit variance. Let us stack the received signal vectors in (4) for

N consecutive subcarriers of the g-th (1 ≤ g ≤ G) OFDM-IM

subblock, which can be expressed as⎡⎢⎢⎢⎣
ỹg
1

ỹg
2
...

ỹg
N

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

ỹg

=

√
ρ

T

√
N

K

⎡⎢⎢⎢⎢⎣
(Ag

1)
1/2

0 . . . 0

0 (Ag
2)

1/2
. . . 0

...
...

. . .
...

0 0 . . . (Ag
N )

1/2

⎤⎥⎥⎥⎥⎦
︸ ︷︷ ︸

Ãg

×

⎡⎢⎢⎢⎣
x̄g
1

x̄g
2
...

x̄g
N

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

x̃g

+

⎡⎢⎢⎢⎣
w̃g

1

w̃g
2

...

w̃g
N

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

w̃g
n

(5)

where ỹg is the received signal vector after stacking, Ãg is

a block diagonal channel matrix whose diagonal elements are

(Ag
n)

1/2
with n = 1, . . . , N and the off-diagonal elements are

zero matrices 0 of size T × T , x̃g is the data vector after

stacking all g-th OFDM-IM subblocks, and w̃g is a TN × 1
zero-mean AWGN vector with unit variance elements.

By considering a joint detection for all g-th OFDM-IM

subblocks from different transmit antennas, the ML detector

based on (5) for MIMO-OFDM-IM is given by

ˆ̃xg = argmin
x̃g

∥∥∥∥∥ỹg
n −

√
ρ

T

√
N

K
Ãgx̃g

∥∥∥∥∥
2

. (6)

Although the ML detector can achieve optimal error perfor-

mance, its computational complexity increases exponentially

with the number of transmit antennas. From (6), it can be

observed that the search complexity per subblock is of order(
NCM

K
)T

for the ML detector, which is costly and even

infeasible for the practical implementation of the receiver.

III. LOW-COMPLEXITY DETECTOR DESIGN

In this section, we will develop a novel detector for MIMO-

OFDM-IM based on deterministic SMC, whose objective is to

approximate the a posteriori distributions of the states of some

Markov processes, given some noisy and partial observations

[12]. As will be shown by simulations, the proposed detector

can save computational complexity significantly and provide

near-optimal performance for MIMO-OFDM-IM.

A. Sequential Structure for MIMO-OFDM-IM

To apply the SMC theory to the detection of MIMO-

OFDM-IM, we first construct the sequential structure based on

the observed signals. Inspired by the successive interference

cancellation (SIC) method for the MIMO detection [13], we

apply the QL decomposition2 to the matrix (Ag
n)

1/2
in (4) as

(Ag
n)

1/2
= Qg

nL
g
n, n = 1, . . . , N, g = 1, . . . , G (7)

where Qg
n is a unitary matrix, and Lg

n is a lower triangular

matrix. The lower triangular operation is carried out by the

left multiplication of the vector ỹg
n in (4) by (Qg

n)
H

to obtain

z̄gn = (Qg
n)

H
ỹg
n, which can be further written as⎡⎢⎢⎢⎣

zg1(n)
zg2(n)

...

zgT (n)

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

z̄g
n

=

√
ρ

T

√
N

K

⎡⎢⎢⎢⎣
lg1,1(n)
lg2,1(n) lg2,2(n)

...
...

. . .

lgT,1(n) lgT,2(n) . . . lgT,T (n)

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

Lg
n

×

⎡⎢⎢⎢⎣
xg1(n)
xg2(n)

...

xgT (n)

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

x̄g
n

+

⎡⎢⎢⎢⎣
vg1(n)
vg2(n)

...

vgT (n)

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

v̄g
n

(8)

where v̄g
n = (Qg

n)
H
w̃g

n is still a T × 1 zero-mean AWGN

vector with unit variance elements as the matrix Qg
n is unitary.

Based on the structure in (8), the SIC may be applied to detect

the data vector x̄g
n in a sequential manner, i.e., the interfer-

ence due to the previously decoded subblocks is subtracted

from the observed sample before decoding the next subblock.

However, as the SIC method is known to suffer from the error

propagation problem, we will not employ the SIC method but

instead exploit the aforementioned sequential structure for the

low-complexity detector design of MIMO-OFDM-IM.

B. Deterministic SMC Aided Subblock-wise Detection
After the lower triangular operation, the sequential structure

in (8) can be exploited by applying the SMC method to draw

samples starting from the first transmit antenna and ending

to the last one. Indeed, if we simply regard each OFDM-IM

subblock xg
t as a super modulated symbol drawn from a large

finite set, we have the a posteriori distribution of {xg
t }Tt=1

conditioned on {zgt }Tt=1 as

P
(
{xg

t }Tt=1

∣∣∣ {zgt }Tt=1

)
∝

T∏
t=1

p
(
zgt

∣∣∣Xg
t

)
P (xg

t ) (9)

where zgt � [zgt (1) z
g
t (2) · · · zgt (N)]

T
denotes the observed

subblock in the t-th (1 ≤ t ≤ T ) branch of the receiver after

the lower triangular operation in (8), and Xg
t � {xg

t′}tt′=1.

Based on (9), we turn to construct the sequence of probabil-

ity distributions
{
P
(
Xg

t

∣∣∣Zg
t

)}T

t=1
, where Zg

t � {zgt′}tt′=1.

Specifically, the sequential distributions can be expressed as

2The QL decomposition can be obtained in analogy with the QR decom-
position, which can be derived by using the Gram-Schmidt process starting
from the last column of the designated matrix.
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P
(
Xg

t

∣∣∣Zg
t

)
∝

t∏
t′=1

p
(
zgt′

∣∣∣Xg
t′

)
P (xg

t′) (10)

for t = 1, . . . , T . From the perspective of the probability
theory, our aim is to estimate the a posteriori probability of

each OFDM-IM subblock

P
(
xg
t = Φi

∣∣∣ {zgt }Tt=1

)
, Φi ∈ Φ̃, t = 1, . . . , T (11)

based on the observed subblocks {zgt }Tt=1, where Φ̃ �
{Φi}NCMK

i=1 with |Φ̃| = NCM
K denotes the set including all

possible realizations of the OFDM-IM subblock. Instead of

the direct computation of (11), which is too computationally

expensive, we seek to numerically approximate (11) by using

the deterministic SMC theory to substantially reduce the

complexity at the receiver.

Let (Xg
t )

(b)
with b = 1, . . . , β be the particles drawn by

the SMC method at each sampling interval on the basis of

subblock, where β denotes the total number of particles. To

implement the SMC method, we first need to generate a set

of incomplete particles for the OFDM-IM subblocks, and then

update the corresponding importance weights for those parti-

cles with respect to the distribution of (9) until the subblock at

the last antenna is reached. Moreover, to update the importance

weights, it is crucial to design the trial distribution which

minimizes the variance of the importance weights conditioned

upon the previous particles and the observed signals [12].

Under the criterion of minimum conditional variance of the

importance weights, we simply choose the trial distribution as

ψ
(
xg
t

∣∣∣Zg
t ,
(
Xg

t−1

)(b)) ∝ P
(
xg
t

∣∣∣Zg
t ,
(
Xg

t−1

)(b))
(12)

for t = 1, . . . , T .
Proposition 1: With the trial distribution given in (12), the

importance weight for the SMC can be updated according to

(�g
t )

(b) ∝ (
�g

t−1

)(b) · p(zgt ∣∣∣ (Xg
t−1

)(b))
(13)

where p
(
zgt

∣∣∣ (Xg
t−1

)(b))
can be regarded as the prediction

distribution of the current observed subblock zgt under the

condition of the previous particle
(
Xg

t−1

)(b)
.

Proof: See Appendix.
In MIMO-OFDM-IM, each OFDM-IM subblock has a finite

number of realizations, i.e., NCM
K . For this reason, the deter-

ministic SMC sampling can be applied by first enumerating

all possible subblock realizations at each sampling interval

and then calculating their associated prediction distributions

exactly based on the previous particles paired with the specific

subblock sample. In other words, with the given particle(
Xg

t−1

)(b)
, we can calculate each prediction distribution

(γgt )
(b)
[i] � p

(
zgt

∣∣∣xg
t = Φi,

(
Xg

t−1

)(b))
(14)

for Φi ∈ Φ̃ to get a more precise result. If the specific

subblock sample xg
t = Φi is assumed in the prediction

distribution, the update for the importance weight in (13) can

be revised as

(�g
t )

(b)
[i] ∝ (

�g
t−1

)(b) · (γgt )(b)[i] · P (xg
t = Φi) (15)

∝ (
�g

t−1

)(b) · (γgt )(b)[i] (16)

where i = 1, . . . , NCM
K , and (16) holds due to the equal

probability assumption for all subblock realizations. Since the

noise vector v̄g
n = (Qg

n)
H
w̃g

n in (8) is white Gaussian, the

prediction distribution (γgt )
(b)
[i] can be expressed as

(γgt )
(b)
[i] =

1

πN
exp

{
−
∥∥∥zgt − (ug

t )
(b)
[i]

∥∥∥2} (17)

where (ug
t )

(b)
[i] �

[
(ugt (1))

(b)
[i] (ugt (2))

(b)
[i] · · · (ugt (N))

(b)
[i]

]T

denotes the mean vector of zgt , whose n-th (1 ≤ n ≤ N )

element is given by

(ugt (n))
(b)
[i] =

√
ρ

T

√
N

K

t−1∑
t′=1

lgt,t′(n) (x
g
t′(n))

(b)

+

√
ρ

T

√
N

K
lgt,t(n)Φi (n) (18)

with Φi (n) being the n-th element of the sample vector Φi.

With the update of the importance weights in (16), we

further need to determine the initial particles and their corre-

sponding importance weights. In the initialization of the deter-

ministic SMC, we will compute the a posteriori distributions

P
(
Xg

Γ

∣∣∣Zg
Γ

)
exactly by enumerating all possible realizations

of Xg
Γ corresponding to the g-th subblocks from the first

transmit antenna to the Γ-th one, where the total number of

all possible realizations is |Φ̃|Γ and Γ < T .3 According to

the deterministic SMC and (8), the a posteriori probabilities

P
(
(Xg

Γ)
(b)

∣∣∣Zg
Γ

)
, which act as the initial importance weights

of particles (Xg
Γ)

(b)
, can be expressed as

(�g
Γ)

(b)
= P

(
(Xg

Γ)
(b)

∣∣∣Zg
Γ

)
∝

Γ∏
t=1

(γgt )
(b)
[i] . (19)

where b = 1, . . . , β and
{
(Xg

Γ)
(b)
}β

b=1
contains all possible

realizations of Xg
Γ if β = |Φ̃|Γ. After the initialization,

the importance weights are updated according to (16). At

each sampling interval on the basis of subblock, current β
particles with the highest importance weights are selected as

the survivors over β|Φ̃| possible hypotheses departed from the

previous particles. When the recursion reaches the last sam-

pling interval, i.e., t = T , β particles and the corresponding

importance weights are then used to estimate the a posteriori
probability for each subblock in (11), given by

P
(
xg
t = Φi

∣∣∣ {zgt }Tt=1

) ∼= 1

�̃g
T

β∑
b=1

I
(
(xg

t )
(b)

;Φi

)
(�g

T )
(b)

(20)

where Φi ∈ Φ̃, �̃g
T =

∑β
b=1 (�

g
T )

(b)
, and I (; ) denotes

the indicator function [14]. Notably, the importance weights

obtained at the last sampling interval is applied to compute the

a posteriori subblock probabilities, for those weights provide

better estimations [15] and we detect the corresponding sub-

blocks at the last step. Moreover, the a posteriori probability

3If Γ ≥ T , we can compute P
(
Xg

T

∣∣∣Zg
T

)
exactly based on the determin-

istic SMC; however, it is too computationally expensive.
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Algorithm 1 Deterministic SMC aided subblock-wise detec-

tion
1: Perform the lower triangular operation to obtain (8) and

initiate the particles coupled with the importance weights

via (19);

2: for t = Γ + 1 to T do
3: Update the importance weights according to (16), b =

1, . . . , β;

4: Pick up and retain β particles with the highest impor-

tance weights among the β|Φ̃| hypotheses with weights

set
{
(�g

t )
(b)
[i]

}
, b = 1, . . . , β, i = 1, . . . , NCM

K ;

5: end for
6: Compute the a posteriori probability for each subblock

via (20), and the estimate of each subblock is given by

x̂g
t = argmax

Φi∈Φ̃

P
(
xg
t = Φi

∣∣∣ {zgt }Tt=1

)
, t = 1, . . . , T .

Fig. 2. BER performance comparison of different detection algorithms for
MIMO-OFDM-IM with T = 4, N = 4, and BPSK modulation.

estimated in (20) can be readily applied to the detection

with soft output, which is compatible with the coded system.

Finally, we summarize the deterministic SMC aided subblock-

wise detection in Algorithm 1.

IV. SIMULATION AND NUMERICAL RESULTS

In this section, we verify the effectiveness of the proposed

detection algorithm for MIMO-OFDM-IM via computer sim-

ulation and numerical results. In the simulations, a MIMO

channel with frequency-selective Rayleigh fading is consid-

ered, where the maximum delay spread of the channel is equal

to 10 × Ts, where Ts denotes the sampling period of the

digital system. Each OFDM-IM block consists of NF = 512
subcarriers and is appended by a CP of length 16. It is assumed

that channel state information is unknown to the transmitter

but perfectly estimated at the receiver. For ease of comparison,

the number of receive antennas is set to be equal to the number

of transmit antennas, i.e., R = T , and the number of particles

drawn by the proposed detector is set to be β = 8.

A. Error Performance Comparison

Fig. 2 shows the BER comparison results of different

detection algorithms for the MIMO-OFDM-IM system with

Fig. 3. BER performance comparison of different detection algorithms for
MIMO-OFDM-IM with N = 4, K = 2, and QPSK modulation.

T = 4, N = 4, and BPSK modulation. It can be observed that

the proposed subblock-wise detector achieves near-optimal

performance while the MMSE-LLR detector suffers from a

significant performance loss. By comparing the two scenarios

with different number of active subcarriers (K = 1 and

K = 2), we observe that the BER performance of all detectors

degrades as the number of active subcarriers increases. This

can be understood as each active subcarrier will be allocated

less power when more subcarriers are activated for transmis-

sion.
In Fig. 3, the BER performance of different detection

algorithms is compared for the MIMO-OFDM-IM system with

N = 4, K = 2, and QPSK modulation. As the ML detection

requires an immense amount of computation, its BER curve

is not shown in Fig. 3. It can be seen that the proposed

detector outperforms the MMSE-LLR detector significantly.

Moreover, we observe that unlike the MMSE-LLR detector,

the BER performance of the proposed detector is improved

as the number of receive antennas (R = T ) increases. This

can be understood since the diversity order of the MMSE-

LLR detector is equal to one regardless of the number of

receive antennas while a diversity order of R is obtained by

the proposed detector.

B. Complexity Comparison
In Fig. 4, the computational complexity for different types

of detectors is compared in terms of exact NCM performed

per subcarrier. As expected, the computational complexity of

the ML detection is prohibitive and increases exponentially

with the number of transmit antennas. However, our pro-

posed detectors achieves rather low computational complexity,

which is comparable to that of the MMSE-LLR detector.

Interestingly, the computational complexity of the MMSE-

LLR detector seems to be more susceptible to the number of

transmit antennas and the proposed detector has the potential

to achieve lower complexity than the MMSE-LLR detector

when the number of transmit antennas becomes large. In

summary, the proposed detection algorithms achieve near-

optimal performance while maintaining considerably lower

complexity that is comparable to that of the MMSE-LLR

detector.
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Fig. 4. Complexity comparison of different detection algorithms for MIMO-
OFDM-IM with K = 1, and QPSK modulation.

V. CONCLUSION

In this paper, we have proposed a novel low-complexity

detectors derived from the SMC theory for the MIMO-OFDM-

IM system. The proposed detector draws samples at the

subblock level, exhibiting near-optimal performance for the

MIMO-OFDM-IM system. Computer simulation and numer-

ical results have validated the outstanding performance and

the low complexity of the proposed detector. In the future,

we would like to design another SMC based detector that

draws samples at the subcarrier level to further reduce the

computational complexity and investigate the performance

analysis.

APPENDIX

PROOF OF PROPOSITION 1

According to [12] and [16], the importance weight is given

by

(�g
t )

(b)
=
P
(
(Xg

t )
(b)

∣∣∣Zg
t

)
ψ
(
(Xg

t )
(b)

∣∣∣Zg
t

) . (21)

Although (21) is not sequential, we can come up with a

sequential version by exploiting the property of the trial

distribution. In order to work in a sequential manner, the trial

distribution is supposed to satisfy

ψ
(
Xg

t

∣∣∣Zg
t

)
= ψ

(
Xg

1

∣∣∣Zg
1

) t∏
t′=2

ψ
(
xg
t′

∣∣∣Xg
t′−1, Z

g
t′

)
. (22)

Furthermore, (22) can be rewritten in a recursive form as

ψ
(
Xg

t

∣∣∣Zg
t

)
= ψ

(
Xg

t−1

∣∣∣Zg
t−1

)
ψ
(
xg
t

∣∣∣Xg
t−1, Z

g
t

)
. (23)

Based on (21) and (23), the update recursions for the impor-

tance weights are then given by

(�g
t )

(b)
=
(
�g

t−1

)(b)
×

P
(
(Xg

t )
(b)

∣∣∣Zg
t

)
ψ
((
Xg

t−1

)(b) ∣∣∣Zg
t−1

)
ψ
(
(xg

t )
(b)

∣∣∣ (Xg
t−1

)(b)
, Zg

t

) (24)

where b = 1, . . . , β. With the trial distribution of (12)

satisfying (23), (24) can be further written as

(�g
t )

(b) ∝ (
�g

t−1

)(b)
×

P
(
(Xg

t )
(b)

∣∣∣Zg
t

)
P
((
Xg

t−1

)(b) ∣∣∣Zg
t−1

)
P
(
(xg

t )
(b)

∣∣∣(Xg
t−1

)(b)
, Zg

t

)
(25)

=
(
�g

t−1

)(b) · P
((
Xg

t−1

)(b) ∣∣∣Zg
t

)
P
((
Xg

t−1

)(b) ∣∣∣Zg
t−1

) (26)

∝ (
�g

t−1

)(b) · p(zgt ∣∣∣Zg
t−1,

(
Xg

t−1

)(b))
(27)

=
(
�g

t−1

)(b) · p(zgt ∣∣∣ (Xg
t−1

)(b))
(28)

where (26) holds due to the independence of the previous parti-

cle
(
Xg

t−1

)(b)
and the current subblock xg

t , (27) is obtained by

neglecting the constant term p
(
Zg
t−1

)
/p (Zg

t ), and (28) holds

due to the independence of the noise samples, completing the

proof.
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