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Abstract: In this study, the authors propose novel cooperative spatial modulation (SM) systems with two main relaying
techniques [amplify-and-forward (AF) and decode-and-forward (DF)], where all nodes have multiple transmit and/or receive
antennas. Most of the studies in the literature of cooperative SM systems, which combine the advantages of cooperative
communications and SM systems, consider only the space shift keying (SK) scheme with single receive/transmit antenna at
relay and destination. Since the error performance of SM highly depends on the number of receive antennas and more flexible
cooperative communications systems can be obtained by using SM with multiple antennas, it is essential to investigate multi-
antenna cooperative SM systems. They derive analytical expressions of the average bit error probability for both the newly
proposed cooperative SM-DF and cooperative SM-AF systems and validate with the computer simulation results. Furthermore,
they present the bit error rate comparison of considered systems with classical M-ary phase SK/quadrature amplitude
modulation cooperative systems. Computer simulation results indicate that multiple antennas cooperative SM systems provide
better error performance than classical cooperative systems for both relaying techniques.

1 Introduction
Spatial modulation (SM) [1] is an alternative method to classical
multiple-input– multiple-output (MIMO) transmission techniques
such as vertical-Bell Labs layered space–time and space–time
block codes (STBCs) [2, 3]. In SM, the information is transmitted
via the conventional amplitude-phase modulation (APM) symbols
along with the active antenna indices. log2(Nt) bits are mapped to
the index of activated transmit antenna and log2(M) bits are
allocated for the APM, where Nt is the number of transmit antennas
and M is the constellation size. Hence, the total number of
transmitted bits becomes log2(NtM) for the SM scheme. Since only
one transmit antenna is active during the transmission, one radio
frequency chain is sufficient at the transmitter of SM, and
additionally inter-channel interference is eliminated. Space shift
keying (SSK) is a special case of SM, where the information is
transmitted through only transmit antenna indices [4]. SSK systems
are relatively simple; however, their data rate is lower compared
with SM for the same number of transmit antennas. SM techniques
have attracted considerable attention from researchers in the past
few years and have been considered as potential candidates for
next generation wireless networks [5].

Cooperative communications which provide effective ways to
combat fading has been investigated extensively during the recent
times. Two main relay processing techniques are commonly used:
decode-and-forward (DF) and amplify-and-forward (AF) relaying
[6]. In the former, the relay (R) decodes the incoming signal and
forwards the newly encoded data to the destination (D). In the
latter, R only amplifies and retransmits the received signal.

The advantages of SM and cooperative communication systems
have been combined in [7–18]. In [7], a special cooperative
communications scenario called dual-hop system, where there is no
direct link between source (S) and destination (D), is considered. In
this dual-hop SM system, all nodes have multiple antennas and R
uses DF strategy. In [8], bit error rate (BER) performance of a
dual-hop SSK system applying AF relaying is investigated for
single receive antenna at both R and D. A classical cooperative
communications scenario is considered in [9], where S transmits its
data using SSK to N relays and D (all nodes have single transmit
and receive antennas) in the first time slot. In the following N time
slots, N relays successively forward the incoming signal with one

of the relay processing techniques, where both AF and DF
strategies are investigated. Since the relays have single antenna,
communication between R and D cannot be performed with SSK in
DF systems. In [10], the dual-hop SSK system in [8] is enhanced to
an N-relay system using opportunistic relaying to increase the
spectral efficiency. Cooperative SM system with multi-antenna S,
single transmit/receive antenna, multiple-R using DF strategy and
single receive antenna D is considered in [11]. The first
cooperative system in which all nodes have multiple transmit and
receive antennas is introduced in [12]. However, the exact BER
analysis for SSK-DF system with incremental relaying and
selection combining at D is derived only for two transmit antennas
at S and R.

Combining the advantages of both SM and STBC, the STBC-
SM scheme is introduced in [13]. Applying the idea of STBC-SM
to the cooperative systems is investigated in [14], where end-to-end
pairwise error probability (PEP) analysis and optimal source–relay
power allocation is presented.

Furthermore, the outage probability analysis of cooperative SM
systems can be found in [15] and the combination of SM/SSK and
physical layer network coding (PLNC) is performed in [16–18].
Since a framework for PLNC is the cooperative system, our study
can be the precursor for PLNC-SM systems. PLNC is proposed to
increase the spectral efficiency of cooperative communications,
where different users share the same relay to communicate with
each other at the same time.

In this work, we propose novel cooperative SM systems with
AF and DF techniques, where all nodes have multiple transmit
and/or receive antennas, an issue which has not been studied
before. The previous studies in the literature of cooperative SM
systems generally consider the SSK technique instead of SM.
Additionally, most of these studies assume single transmit and/or
receive antenna at the relay(s) and destination. As known, the
SM/SSK schemes need at least two transmit antennas to map
information bits to the antenna indices. Furthermore, a cooperative
SM system with DF relaying, where the relay(s) has only one
transmit antenna is not a complete SM system since the relay(s)
cannot re-encode the decoded data into the SM symbols. Moreover,
to improve the error performance compared with APM, an SM
system requires at least two receive antennas. To the best of our
knowledge, a comprehensive work on cooperative SM systems that
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have multiple transmit and/or receive antennas at R and D has not
been performed in the literature yet.

We consider a cooperative SM scheme where S, R and D have
multiple transmit/receive antennas. In this scheme, S sends the SM
symbols to R and D in the first phase. In the second phase, R
processes and forwards the received signal either by amplifying or
decoding. When it uses the AF strategy, it only amplifies the
received signal at each antenna and sends it from all antennas
(MIMO-AF). When DF strategy is utilised, R decodes the received
signal using maximum-likelihood (ML) detection and maps the
estimated signal to a new SM symbol and forwards it to D in the
second phase (MIMO-DF). At D, ML detection is employed to
determine the transmitted SM symbol.

In this paper, we derive the average bit EPs (ABEP) for both the
MIMO-AF and the MIMO-DF systems and validate them with the
computer simulations results. Furthermore, these two cooperative
SM systems are compared with the classical cooperative systems
[6] using M-ary modulations in terms of BER performance.
Computer simulations and analytical expressions show that the
proposed MIMO-DF and MIMO-AF systems provide considerable
error performance improvements over conventional cooperative
APM systems. Finally, the BER comparison of MIMO-AF and
MIMO-DF cooperative SM systems are presented.

The rest of this paper is organised as follows. In Section 2, the
system model is given. In Sections 3 and 4, the ABEP analysis of
cooperative SM system with DF and AF relaying are given,
respectively. The theoretical and computer simulation results are
presented in Section 5. Finally, Section 6 concludes this paper.

Notations: A scalar, a vector and a matrix will, respectively, be
denoted by a lower-/upper-case italic, a lower-case boldface and an
upper-case boldface letter. ( ⋅ )T, ( ⋅ )H and ∥ ⋅ ∥ represent
transpose, Hermitian transpose and Euclidean/Frobenius norm of a
vector/matrix, respectively. ℂm × n represents the dimensions of a
complex-valued matrix. Pr ⋅  denotes the probability of an event
and E ⋅  is the expectation operation. The probability density
function (pdf) and the cumulative distribution function of a random

variable (rv) X are given as f X(x) and FX(x), respectively.
CN(0, σ2) denotes the circularly symmetric zero-mean complex
Gaussian distribution with variance σ2 and IM is the identity matrix
with dimensions M × M. Gamma(α, β) denotes the Gamma
distribution with shape and scale parameters α and β, respectively.
Q( ⋅ ) is the tail probability of standard Gaussian distribution and

.

.  denotes the binomial coefficient. Γ( ⋅ ) is the gamma function.
Mγ(s) = E esγ  is the moment generating function (MGF) of a rv γ
and tr( ⋅ ) is the trace operator.

2 System model
The considered cooperative communications system for SM
MIMO-DF and MIMO-AF consisting of a single relay is given in
Figs. 1 and 2. In these systems, S and R have Nt

S and Nt
R transmit

antennas, whereas R and D have Nr
R and Nr

D receive antennas,
respectively. The channel matrices composed of channel fading
coefficients between S–R, S–D and R–D can be given as
HSR ∈ ℂNr

R × Nt
S
, HSD ∈ ℂNr

D × Nt
S
, and HRD ∈ ℂNr

D × Nt
R
, respectively.

Each element of the above matrices is modelled as an independent
and identically distributed rv with CN(0, σh

2) and the channel
obeys the Rayleigh flat fading model, where σh

2 is equal to σSR
2 , σSD

2

and σRD
2  for the corresponding three channel matrices. To take into

account the path loss, the variances are defined as σSR
2 ≜ dSR

−α,
σSD

2 ≜ dSD
−α and σRD

2 ≜ dRD
−α  where dSR, dSD and dRD are the distances

between S–R, S–D and R–D, respectively and α is the path loss
exponent [6]. Signal-to-noise ratio (SNR) parameter is defined as
received SNR at D. 

An SM symbol is given as x = [0 0 ⋯ 0
l − 1

xq 0 ⋯ 0
Nt

S − l

]T,

where l is the index of the activated transmit antenna, xq is the M-
ary phase SK (M-PSK)/quadrature amplitude modulation (QAM)
constellation symbol and it is assumed that E xHx = 1. In the first
time slot, S transmits an SM symbol to R and D as

ySR = HSRx + nSR (1)

ySD = HSDx + nSD (2)

respectively, where nSR(SD) ∈ ℂNr
R(Nr

D) × 1 is the additive white
Gaussian noise (AWGN) samples vector whose entries are
modelled as CN(0, N0) with noise spectral density N0/2 per
dimension.

2.1 DF cooperative SM

In the second time slot, the detector at R, which has the ideal
channel state information, detects the SM symbol applying the ML
decision rule as

(l~, x~q) = arg min
l, xq

∥ ySR − HSRx ∥2
(3)

and re-encodes into a new SM symbol by considering l
~
 and x~q as

x~ = [0 0 ⋯ 0
l
~ − 1

x~q 0 ⋯ 0
Nt

R − l
~

]T and sends it to D, which is

received as

yRD = HRDx~ + nRD (4)

where nRD ∈ ℂNr
D × 1 is the AWGN samples vector whose entries are

distributed with CN(0, N0). From (2) and (4), the ML detection
rule at D is given by

(l^, x^q) = arg min
l, xq

∥ ySD − HSDx ∥2 + ∥ yRD − HRDx ∥2 . (5)

Fig. 1  Cooperative communications scenario with SM MIMO-DF
 

Fig. 2  MIMO-AF configuration (Nt
R = Nr

R = NR)
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2.2 AF cooperative SM

In MIMO-AF system, R amplifies the received signal at each
receive antenna and sends to D from the same antenna as seen from
Fig. 2 (Nt

R = Nr
R = NR). The received signal vector at D becomes

yRD = GHRDySR + nRD

= GHRDHSRx + nMIMO
(6)

where G = 1/(Nt
R σSR

2 + N0 ) (in G, 1/Nt
R is the scaling factor

for the normalisation of the transmitted energy at R), nMIMO is the
coloured Gaussian noise vector and can be expressed as

nMIMO = GHRDnSR + nRD (7)

with the conditional covariance matrix

C = E nMIMOnMIMO
H ∣ HRD

= G2HRD HRD HN0 + N0INr
D .

(8)

ML detection rule at D is given for the MIMO-AF system as [19]
(see (9)) 

3 ABEP analysis for DF relaying
The ABEP of the cooperative SM system can be evaluated using
the average PEP (APEP) which is computed next.

APEP at D for the MIMO-DF cooperative SM system is upper
bounded as (see (10)) where PR(x → x~) is the APEP at R when x is
transmitted and it is erroneously detected as x~, PR

c (x) is the
probability of correct decision at R, PD(x → x^ ∣ R: x) is the APEP
at D when R detects the SM symbol correctly and PD(x → x^ ∣ R: x~)
is the APEP at D when R makes a decoding error.

PD(x → x^ ∣ R: x~) can be calculated for all possible x~ as (see
(11)) 

(see (12)) 
which simplifies to (see (13)) .

When the transmitted SM symbol x is erroneously detected as

x^ = [0 0 … 0
l^ − 1

x^q 0 … 0
Nt − l^

]T

at both R and D, i.e. for the case of x~ = x^ , (13) can be written as
(see (14)) .

Since the Q-function strictly decreases, (14) is greater than (13).
Moreover, at high SNR values (N0 → 0), (14) can be approximated
as [20] (see (15)) .

Since the right- and left-hand sides of the inequality in (15)
follow the same distribution, this probability equals 0.5. This
implies that ABEP of MIMO-DF cooperative SM system is
dominated by the case of x~ = x^ . Therefore, (10) can be
approximated as (see (16)) .

PR(x → x^) is the APEP of the conventional SM and can be
formulated as

PR(x → x^) = E Pr x → x^ ∣ HSR

= E Q ∥ HSR x − x^ ∥2

2N0
.

(17)

PR
c (x) is also dominated by the case of x~ = x^  and can be

approximated as PR
c (x) ≃ 1 − PR(x → x^) .

Since PD(x → x^ ∣ R: x) is the APEP at D when R detects the SM
symbol correctly, the antenna index and the data symbol are
detected properly, i.e. l

~ = l and x~q = xq. For this case, by
substituting x~ = x in (13), PD(x → x^ ∣ R: x) simplifies to

PD(x → x^ ∣ R: x) = E Q ∥ HSD x − x^ ∥2 + ∥ HRD x − x^ ∥2

2N0
.

(18)

To obtain the APEP, the pdf's of the rv's in Q-function of (17)
and (18) have to be computed. Let γSR ≜ (ρ/2)∥ HSR x − x^ ∥2

 with

(l^, x^q) = arg min
l, q

∥ ySD − HSDx ∥2/N0 + ∥ C−1/2 yRD − GHRDHSRx ∥2 . (9)

PD
DF(x → x^) ≤ PR

c (x)PD(x → x^ ∣ R: x) + ∑
x~

x~ ≠ x

PR(x → x~)PD(x → x^ ∣ R: x~)
(10)

PD(x → x^ ∣ R: x~) = E Pr ∥ ySD − HSDx ∥2 + ∥ yRD − HRDx ∥2

≥ ∥ ySD − HSDx^ ∥2 + ∥ yRD − HRDx^ ∥2 ∣ HSD, HRD
(11)

= E Pr ∥ HSDx + nSD − HSDx ∥2 + ∥ HRDx~ + nRD − HRDx ∥2

≥ ∥ HSDx + nSD − HSDx^ ∥2

+∥ HRDx~ + nRD − HRDx^ ∥2 ∣ HSD, HRD

(12)

PD(x → x^ ∣ R: x~) = E Q ∥ HSD x − x^ ∥2 + ∥ HRD x~ − x^ ∥2 − ∥ HRD x~ − x ∥2

2N0 ∥ HSD x − x^ ∥2 + ∥ HRD x~ − x^ ∥2 + ∥ HRD x~ − x ∥2 . (13)

PD(x → x^ ∣ R: x̂) = E Q ∥ HSD x − x^ ∥2 − ∥ HRD x^ − x ∥2

2N0 ∥ HSD x − x^ ∥2 + ∥ HRD x^ − x ∥2 . (14)
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the pdf f γSR(γ), γSR ≥ 0 where ρ = (1/N0). The APEP at R can be
calculated as

PR(x → x^) = ∫
0

∞
Q γSR f γSR(γ) dγ (19)

which can be computed with Craig's formula [21]. Using the
alternative form of the Q-function in (19) yields

PR(x → x^) = 1
π∫0

π /2
MγSR − 1

2sin2 θ
dθ (20)

where MγSR(s) is the MGF of γSR. For the Rayleigh flat fading
channel model, γSR follows the gamma distribution (in this special
case, in fact, it follows Erlang distribution) with
Gamma Nr

R, (ρλxσSR
2 /2) , where λx is the single eigenvalue of

x − x^ x − x^ H and is equal to

λx =
xq − x^q

2 if l = l
^

xq
2 + x^q

2 if l ≠ l
^ .

(21)

The MGF of γSR is obtained as [21]

MγSR(s) = 1 − ρλxσSR
2

2 s
−Nr

R

. (22)

(20) can be computed using (5A.4a) of [21] as

PR(x → x^) = 1
2 1 − μ∑ j = 0

Nr
R − 1 2 j

j
1 − μ2

4
j

(23)

where μ = (ρλxσSR
2 /4)/((ρλxσSR

2 /4) + 1). The same procedures can
also be followed for the calculation of PD(x → x^ ∣ R: x).

Let us consider

γDF = ρ
2 ∥ HSD x − x^ ∥2 + ∥ HRD x − x^ ∥2

= γSD + γRD .
(24)

(24) is the sum of two Gamma rv's with different scale parameters.
The MGF of (24) can be written as

MγDF(s) = 1 − ρλxσSD
2

2 s
−Nr

D

1 − ρλxσRD
2

2 s
−Nr

D

. (25)

Therefore, PD(x → x^ ∣ R: x) can be written as

PD(x → x^ ∣ R: x) = 1
π∫0

π /2
MγDF − 1

2sin2 θ
dθ (26)

which can be calculated with the help of Appendix 5A.58 of [21].

On the other hand, the pdf of γDF follows the distribution of the
sum of two gamma rv's as Gamma 2Nr

D, (ρλxσ2/2)  when
σSD

2 = σRD
2 = σ2. Therefore, its MGF is given as

MγDF(s) = 1 − ρλxσ2

2 s
−2Nr

D

. (27)

As a result, PD(x → x^ ∣ R: x) is obtained as

PD(x → x^ ∣ R: x) = 1
2 1 − μ ∑

j = 0

2Nr
D − 1

2 j
j

1 − μ2

4
j

(28)

where μ is as defined in (23).
After computing the APEP, the ABEP can be averaged as [22]

Pb
DF ≃ 1

NtMlog2(NtM) ∑x
∑

x̂
x̂ ≠ x

n x → x^ PD
DF(x → x^)

(29)

where n x → x^  is the number of BEs between the SM symbols x
and x^ .

An upper limit can be obtained when θ = π /2 is used in the
integrand function of (20) and (26). Therefore, PR(x → x^) and
PD(x → x^ ∣ R: x) are upper bounded as

PR(x → x^) ≤ 1 + ρλxσSR
2

4
−Nr

R

(30)

PD(x → x^ ∣ R: x) ≤ 1 + ρλxσSD
2

4
−Nr

D

1 + ρλxσRD
2

4
−Nr

D

. (31)

We can easily see from (16), (30) and (31) that when SNR → ∞,
i.e. (ρλxσSR, RD, SD

2 )/4 → ∞, the diversity order can be achieved as
min Nr

R, 2Nr
D . Note that, when σSR

2 = dSR
−α ≫ σSD

2 , σRD
2 , i.e. R close

to S, R detects the signal correctly with a high probability and (31)
dominates compared with (30). Therefore, the diversity order will
be 2Nr

D.

4 ABEP analysis for AF relaying
The APEP at D for the SM MIMO-AF system can be calculated as
(see (32)) Following the same steps as in (12) and after
simplifications, (32) can be rewritten as:

PD
AF(x → x^) = E Q γSD + γSRD (33)

where γSD is same as in (24) and for source-relay-destination
(SRD), γSRD is given as

γSRD = G2∥ C−1/2HRDHSR x − x^ ∥2

2 . (34)

PD(x → x^ ∣ R: x^) ≃ Pr ∥ HSD x − x^ ∥2 < ∥ HRD x − x^ ∥2 ∣ HSD, HRD . (15)

PD
DF(x → x^) ≃ PR

c (x)PD(x → x^ ∣ R: x) + PR(x → x^)PD(x → x^ ∣ R: x^) . (16)

PD
AF(x → x^) = E Pr ∥ ySD − HSDx ∥2/N0 + ∥ C−1/2 yRD − GHRDHSRx ∥2

≥ ∥ ySD − HSDx^ ∥2/N0 + ∥ C−1/2 yRD − GHRDHSRx^ ∥2 ∣ HSD, HSR, HRD .
(32)
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The MGF of γSD can be calculated as in (22). On the other hand,
the MGF of γSRD is given as (see the Appendix)

MγSRD(s) = det Φ
∏n = 1

rmin Γ rmax − n + 1 Γ rmin − n + 1 (35)

where rmin = min NR, Nr
D , rmax = max NR, Nr

D  and Φ is an
rmin × rmin Hankel matrix whose (n,m)th entry is obtained as

Φn, m = z−ηΓ(η)U η, η, 1
z + G2z−η − 1Γ(η + 1)U η + 1, η + 1, 1

z (36)

where z = G2 1 − (ρλxsσSR
2 /2) , η = rmax − rmin + n + m − 1 and

U( ⋅ , ⋅ , ⋅ ) is the confluent hypergeometric function of the second
kind.

Using Craig's formula again, (33) is expressed as

PD
AF(x → x^) = 1

π∫0

π /2
MγSD − 1

2sin2 θ
MγSRD − 1

2sin2 θ
dθ (37)

where numerical integration is needed. When the numerical
integration is not used, (37) can be simplified and upper bounded
as

PD
AF(x → x^) < 1

π MγSD − 1
2 MγSRD − 1

2 (38)

ABEP can be obtained using the union bound as [22]

Pb
AF ≤ 1

NtMlog2(NtM) ∑x
∑

x̂
x̂ ≠ x

n x → x^ PD
AF(x → x^) .

(39)

On the other hand, when SNR → ∞, i.e. λxσSD(SR)
2 /N0 → ∞, (38)

is approximated to

PD
AF(x → x^) ≃ 1

π 1 + ρλxσSD
2

4
−Nr

D

G2 1 + ρλxσSR
2

4

−rmin

(40)

where we use U(a, b, z) ≃ z1 − b for small z [23]. Finally, the
diversity order of the MIMO-AF system can be observed from (40)
as Nr

D + min NR, Nr
D .

5 Performance evaluation
In this section, analytical and computer simulation results for the
BEP of cooperative SM systems are presented. Moreover, BER
performance comparisons of the cooperative SM (both AF and DF)
and classical cooperative systems are performed. In these

comparisons, classical cooperative systems are selected as in [6],
where the considered modulation is classical M-PSK or QAM. On
the other hand, modulation order is chosen to provide the same
spectral efficiency as in the cooperative SM systems. Since, only a
single transmit antenna is active in the SM systems, a single
antenna is employed for classical M-PSK/QAM systems (Nt

S = 1).
At receiver, maximum ratio combining is considered for classical
cooperative systems. Monte Carlo simulations are performed for at
least 106 channel uses as a function of the received SNR at D and
compared with the analytical results. The path loss exponent is
chosen as α = 3.

5.1 Results for DF relaying

To obtain the same spectral efficiency, the number of transmit
antennas and modulation orders are taken identical for S–R and R–
D links, i.e. Nt

S = Nt
R = Nt and MS = MR = M for MIMO-DF

relaying.
BER performance of the cooperative SM system with DF

relaying is given in Fig. 3a. The number of receive antennas for R
and D are considered as the same, i.e. Nr

R = Nr
D = 2. The computer

simulations are evaluated for different spectral efficiencies by
considering different numbers of transmit antennas and modulation
orders. As seen from Fig. 3a, theoretical curves closely match with
computer simulation results at high SNR due to the use of BER
union bound. 

In Fig. 3b, the effect of number of receive antennas on the BER
performance is investigated. Computer simulation results are
depicted for Nt

S = Nt
R = 2, M = 2 (BPSK) and different numbers

of receive antennas at R and D. As seen from Fig. 3b, since the
lower modulation orders and number of transmit/receive antennas
are chosen, the analytical curves and computer simulation results
are in close match also at lower SNR values. On the other hand, the
slope of the curves, i.e. the diversity order, depends on the number
of receive antennas at R and D, i.e. min Nr

R, 2Nr
D . In Figs. 3a and

b, unit distances are considered between all nodes, i.e.
dSD = dSR = dRD = 1.

In Fig. 4, the effect of different distances between nodes on the
BER performance is evaluated both analytically and theoretically.
The SM parameters are chosen as Nt

S = 2, M = 2 (BPSK) and the
number of receive antennas at R and D is Nr

R = Nr
D = 2. A unit

distance is assumed between S–D and R–D (dSD = dRD = 1), and
the following three different cases are considered for the distances
between S and R: dSR = 0.3, dSR = 0.7 and dSR = 1. It can be seen
from Fig. 4 that the BER performance of DF relaying, more
specifically the diversity order, improves when R gets closer to S.
For this case, σSR

2  becomes larger than σ2 and when the SNR goes to
infinity, (31) dominates the diversity order that converges to 2Nr

D. 

Fig. 3  BER performance of cooperative SM system with DF relaying
(a) For different numbers of transmit antennas and modulation orders, Nt

S = Nt
R = Nt and Nr

R = Nr
D = 2, (b) For different numbers of receive antennas at R and D,

Nt
S = Nt

R = Nt = 2, M = 2 [binary PSK(BPSK)]
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The BER performance comparison of cooperative SM and
classical cooperative M-ary modulated systems for R = 3, 4 and 5 
bits/s/Hz spectral efficiencies is given in Fig. 5, where
R = log2(NtM) assuming two receive antennas at R and D. As seen
from Fig. 5, cooperative SM system provides 2 dB SNR gain over

the corresponding classical APM modulated cooperative system
when R and D have two receive antennas. 

5.2 Results for AF relaying

Computer simulations are performed as a function of the power
spent at S to noise ratio PS/N0  for AF relaying. The power spent
at R is taken equal to PS, i.e. PS = PR. In all computer simulations,
unit power is assumed at each nodes.

Theoretical and computer simulation results for AF relaying are
given in Fig. 6, where three different SM configurations are
considered: (i) Nt

S = 2, Nt
R = Nr

R = NR = 2, Nr
D = 2, (ii) Nt

S = 2,
NR = 4, Nr

D = 2, and (iii) Nt
S = 4, NR = 4, Nr

D = 4. For all
configurations QPSK is considered. As seen from Fig. 6,
theoretical results exactly match with the computer simulation
results at high SNR values. 

In Fig. 7, the BER comparison of MIMO-AF cooperative SM
system and classical M-PSK/QAM modulated cooperative system
with ML decision at D is given for R = 3 and 4 bits/s/Hz spectral
efficiencies. The classical modulated systems also use all of the
available antennas at R, denoted by M-PSK/QAM MIMO-AF.
Since only a single transmit antenna is active in the SM system,
number of transmit antennas for classical M-PSK/QAM system is
chosen as Nt

S = 1. The number of transmit/receive antennas for R
and D is Nr

R = Nr
D = 2 for both systems. As seen from Fig. 7, the

cooperative SM scheme provides better error performance than
classical cooperative systems for the same spectral efficiency. It
can be observed that the SM system provides 3 and 4 dB SNR
gains for R = 3 and 4 bits/s/Hz spectral efficiencies, respectively. 

5.3 Comparison of MIMO-DF and MIMO-AF systems

The comparison results of MIMO-DF and MIMO-AF cooperative
SM systems can be found in Figs. 8a and b. SM parameters are
chosen as Nt

S = 2, M = 2 (QPSK) for both figures. In Fig. 8a, the
effect of different numbers of receive antennas at R and D is
investigated. When the number of receive antennas at R is lower,
the error propagation has influence on the BER of the DF system,
so that MIMO-AF system has better error performance. Otherwise,
MIMO-DF system outperforms MIMO-AF. 

Since the location of R directly affects the BER performance of
the DF system, its impact is examined in Fig. 8b. As can be seen
from Fig. 8b, when the links S–R and R–D have dSR = dRD = 0.5,
MIMO-AF system provides better error performance above the
SNR value of 5 dB. When R gets closer to S, i.e. dSR = 0.4, MIMO-
DF system exhibits better BER performance than MIMO-AF up to
the SNR value of 12 dB. This shows that error propagation effect is
still significant at these distances.

Fig. 4  BER performance of cooperative SM system with DF relaying for
different relay locations (dSD = dRD = 1)

 

Fig. 5  BER performance comparison of cooperative SM with classical
cooperative M-ary modulation for DF relaying systems
(Nr

R = Nr
D = Nr = 2)

 

Fig. 6  BER performance of SM MIMO-AF relaying with different
configurations. Nt

R = Nr
R = NR with quadrature PSK (QPSK)

 

Fig. 7  BER comparison of MIMO-AF cooperative SM system with
classical M-PSK/QAM modulated cooperative system (Nt

R = Nr
R = Nr

D = 2)
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6 Conclusion
In this paper, we have investigated the ABEP performance of the
cooperative SM scheme for AF and DF relaying. Most of the
studies on cooperative SM systems in the literature consider only
the SSK scheme with a single receive antenna at R and/or D. In this
paper, we have derived analytical expressions for the ABEP of AF
and DF multi-antenna cooperative communications systems that
employ SM. We also have presented a diversity order analysis and
have demonstrated the effect of relay location to DF relaying.
Since the BER performance is derived analytically from the union
bound, computer simulations and analytical results have shown that
the derived expressions for the ABEP exactly match with the
computer simulation results in high SNR region. We also have
presented the comparison results of MIMO-DF and MIMO-AF
relaying with classical M-PSK/QAM systems. For both relaying
systems, SM technique provides error performance gain over
conventional cooperative APM systems. Finally, the comparison
results of MIMO-AF with MIMO-DF cooperative SM systems
have been introduced. Investigation of real practical problems such
as signalling design and synchronisation, channel estimation errors,
resource management, interference etc. has been left as a future
study.
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9 Appendix. Derivation of (35)
 
To find MγSRD, we extend γSRD, given in (34), as

γSRD = G2

2 tr HRD HC−1HRDHSR x − x^ x − x^ H HSR H . (41)

Using the eigenvalue decomposition for the Hermitian matrix
x − x^ x − x^ H, we have

x − x^ x − x^ H = VΛVH . (42)

Fig. 8  BER comparison of MIMO-AF and MIMO-DF cooperative SM systems
(a) Under different number of receive antennas, Nt

S = 2, M = 4 (QPSK), (b) Under different R locations, Nt
S = 2, M = 4 (QPSK), NR = Nr

D = 2, dSD = 1
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Since the rank of the matrix x − x^ x − x^ H is equal to one, we
have a single eigenvalue λx and the corresponding eigenvector v,
where λx is as in (21) with the indices defined in x^ . Since the
elements of the channel matrices are Gaussian rv's, the elements of
the HSRv vector are also Gaussian. Let us define the vector
d ≜ HSRv, hence we obtain

γSRD = G2λx
2 dH HRD HC−1HRDd . (43)

The MGF of γSRD is given as

MγSRD(s) = E esγSRD

= EHRD, d exp G2λxs
2 dH HRD HC−1HRDd .

(44)

As mentioned earlier, d is a complex Gaussian vector with the
covariance matrix Rd = σSR

2 INR where Nr
R = Nt

R = NR. Therefore,
the MGF of γSRD given HRD can be obtained from [24, Theorem
D.1]

MγSRD ∣ HRD(s) = 1
det INR − ((G2λxσSR

2 s)/2) HRD HC−1HRD
. (45)

It is difficult to integrate (45) with respect to HRD. On the other
hand, the eigenvalue decomposition of the Hermitian matrix
HRD HRD H can be used, i.e. HRD = VΛVH, where V ∈ ℂNR × NR

 is

a unitary matrix and Λ ∈ ℝNr
D × NR

 is a diagonal matrix with ordered

eigenvalues λ1
RD > λ2

RD > ⋯ > λrmin
RD  along its main diagonal, which

yields [25]

MγSRD ∣ Λ(s) = 1
det INr

D − ((G2λxσSR
2 s)/2N0)Λ INr

D + G2Λ −1

= ∏
n = 1

rmin 1
1 − ((G2λxσSR

2 sλn
RD)/(2N0 1 + G2λn

RD )

(46)

where rmin = min {NR, Nr
D}. The joint pdf of ordered eigenvalues

is [26]

f Λ(λ) = ∏n < m
rmin λm − λn

2∏p = 1
rmin λp

rmax − rmine−λp

∏n = 1
rmin Γ rmax − n + 1 Γ rmin − n + 1

(47)

where rmax = max {NR, Nr
D}. The MGF of γSRD can be derived

using (46) and (47) as (see (48)) . (48) can be calculated using
Corollary 2 in [25] as

MγSRD(s) = K−1 det ∫
0

∞
1 − G2λxσSR

2 sλn
RD

2N0 1 + G2λn
RD

−1

× λ rmax − rmin + n + m − 2 e−λ dλ n, m = 1, …, rmin
.

(49)

where K−1 = ∏n = 1
rmin Γ rmax − n + 1 Γ rmin − n + 1 . Performing

some algebraic manipulations in (49), the result in (35) can be
obtained. This completes the derivation.

MγSRD(s) = ∫
λ1

RD
⋯∫

λrmin
RD

1 − G2λxσSR
2 sλn

RD

2N0 1 + G2λn
RD

−1

f Λ(λRD) dλ1
RD⋯dλrmin

RD . (48)
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