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Abstract—In this paper, we propose the scheme of generalized
multiple-mode orthogonal frequency division multiplexing with
index modulation (GMM-OFDM-IM), which allows a different
subcarrier to utilize a signal constellation of a different size
while conveying the same number of IM bits. Considering phase
shift keying (PSK) constellations, we present design guidelines
for GMM-OFDM-IM to achieve the optimal error performance
in the asymptotically high signal-to-noise ratio region. A compu-
tationally efficient and near-optimal detector based on the idea of
sequential decoding is also tailored to GMM-OFDM-IM to avoid
the detection of an illegimate constellation permutation. Monte
Carlo simulations are conducted to examine GMM-OFDM-IM,
whose inherent properties and advantages are revealed by the
simulation results.

I. INTRODUCTION

IM is a novel digital modulation concept that relies on the

indices of some building blocks of communication systems to

convey information [1]. For its appealing advantages such as

superior bit error rate (BER) performance, IM has been widely

recognized as a candidate modulation technique for next-

generation wireless networks [2], [3]. Recently, a great deal

of effort has been poured into developing a special realization

of IM by exploring the OFDM subcarriers. In OFDM-IM [4],

the total OFDM subcarriers are divided equally into several

subcarrier groups to perform IM independently, where the size

of each group is denoted by n. For each subcarrier group, the

information bits are loaded onto both the conventional M -ary

modulation symbols carried on a active subcarriers and the

subcarrier activation patterns of number 2⌊log2
C(n,a)⌋, where

C(·, ·) and ⌊·⌋ stand for the binomial coefficient and the floor

function, respectively.

More recently, great attention has been paid to the use of

multiple signal constellations for IM. The first example with

two signal constellations (primary and secondary ones) was

presented in [5], where the entire signal processing procedure

follows the one of OFDM-IM except that the “inactive”

subcarriers transmit signals from a non-zero signal constella-

tion (secondary one) that is distinguishable from the primary

one utilized by the “active” subcarriers, rather than the null

subcarriers as in OFDM-IM. The signal constellation was also

referred to as a mode in [5], and thereby the proposed scheme

therein was named dual-mode (DM-) OFDM. In [6], a novel

MM-OFDM-IM scheme that modulates n subcarriers by n
distinguishable signal constellations of the same size as well as

their permutations was proposed and its diversity was further

enhanced in [7]. Due to the capability of transmitting more IM

bits with a permutational increase, MM-OFDM-IM is shown

to achieve much higher spectral efficiency (SE) and better

BER performance than both OFDM-IM and DM-OFDM [6]. It

should be noted that MM-OFDM-IM is not a straightforward

generalization of DM-OFDM. The direct extension of DM-

OFDM to multiple modes was in fact proposed in [8], where

n subcarriers are divided into L subgroups (L = 2 for DM-

OFDM) each transmitting a different mode.

Aiming to provide more flexible choices of SE values, in

this paper, we propose a generalization of MM-OFDM-IM,

termed as GMM-OFDM-IM, by considering PSK constella-

tions and relaxing the constraint on the cardinalities of the

signal constellations employed by different subcarriers. We

present guidelines to obtain n distinguishable signal constella-

tions from a unit circle that lead to the optimal asymptotic BER

performance of GMM-OFDM-IM systems. Also, we design a

novel detector for GMM-OFDM-IM motivated by the sequen-

tial decoding idea. This detector avoids the decision on an

illegal constellation permutation, thus achieving a performance

closer to that of the maximum-likelihood (ML) detector with

slightly increased computational complexity.1

II. SYSTEM MODEL OF GMM-OFDM-IM

The GMM-OFDM-IM transmitter, which is built on the

conventional OFDM architecture of N subcarriers, is depicted

in Fig. 1. At the beginning, a total of P incoming bits to

be transmitted via an OFDM symbol are equally split into

g blocks, each containing m = P/g bits, and correspond-

ingly, the total OFDM subcarriers are divided into g groups,

each comprising n = N/g subcarriers. Then, one bit block

modulates one subcarrier group of a size much smaller than

N independently, reducing the implementation complexity of

IM. For brevity, let us focus on the processing procedure

associated with the γ-th bit block and subcarrier group, where

γ ∈ {1, . . . , g}. Specifically, the available m bits are further

1Notation: Scalar variables are in italic letters. Column vectors and ma-
trices are denoted by lowercase and uppercase boldface letters, respectively.
Superscript T stands for the transpose operation. ‖·‖F refers to the Frobenius
norm. In denotes the n×n identity matrix. CN (µ, σ2) denotes the complex
Gaussian distribution with mean µ and variance σ2. diag(·) transforms a
vector into a diagonal matrix.
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Fig. 1. Block diagram of GMM-OFDM-IM transmitter.

partitioned into two parts for different purposes. The first part,

consisting of m1 bits, determines the order of the sequence

Q(= {1, . . . , n}), generating Iγ = {iγ,1, . . . , iγ,β , . . . , iγ,n},

where iγ,β ∈ Q with β ∈ Q. Using Iγ , the mode employed by

the β-th subcarrier, denoted by Siγ,β
, is determined as the iγ,β-

th element of a mode set {S1, . . . ,Sn}. It is noteworthy that

to enable IM, we have to ensure that Sβ ∩ Sβ′ = ∅, ∀β, β′ ∈
Q, β 6= β′, though they may have different constellation sizes.

Without loss of generality, we assume that nk out of n modes

are Mk-ary constellations, where
∑K

k=1 nk = n and M1 >
M2 > · · · > MK . In this paper, all modes are limited to be

PSK constellations and the combination of the total n modes is

presented as an M-ary constellation that is normalized to have

unit average power, where M =
∑K

k=1 nkMk. The second

part, made up of m2 =
∑K

k=1 nklog2Mk bits, is mapped to an

n × 1 symbol vector sγ = [sγ,1, . . . , sγ,β , . . . , sγ,n]
T , where

sγ,β ∈ Siγ,β
. Since {Siγ,1

, . . . ,Siγ,n
} is a full permutation

of {S1, . . . ,Sn} that has n! possible realizations, we have

m1 = ⌊log2n!⌋ and there are n! − 2⌊log2
n!⌋ unused (illegal)

permutations. The mapping between m1 bits and Iγ can be

easily implemented through a look-up table or the permutation

method [6].

After sγ for all γ are obtained, they enter the block creator

coupled with the subcarrier-level interleaver, outputting the

N × 1 main OFDM block

xF = [xF (1), . . . , xF (N)]
T

= [s1,1, . . . , sg,1, s1,2, . . . , sg,2, . . . , s1,n, . . . , sg,n]
T
.
(1)

Then, N -point inverse fast Fourier transform (FFT) is per-

formed on xF to generate the time-domain signal xT =
[xT (1), . . . , xT (N)]T . A length-G cyclic prefix (CP) [xT (N−
G + 1), . . . , xT (N)]T is further appended at the beginning

of xT , and the resulting signal is fed into parallel-to-serial

(P/S) and digital-to-analog converters successively. Finally, the

output signal is emitted into the frequency-selective Rayleigh

fading channel, whose time-domain channel impulse response

is given by hT = [hT (1), . . . , hT (ν)]
T

, where ν ≤ G
and each entry of hT follows the distribution CN (0, 1/ν).
We denote the frequency-domain channel transfer function

(CTF) by hF = [hF (1), . . . , hF (N)]T , which is the N -

point FFT of h̄T , where h̄T is a length-N vector given by

h̄T = [hT
T , 0, . . . , 0]T .

At the receiver, the CP is first removed from the received

signal. Subsequently, N -point FFT and de-interleaving oper-

ations are carried out in sequence, yielding the frequency-

domain received signal associated with the γ-th group

yγ = [yγ(1), . . . , yγ(n)]
T
= Xγhγ +wγ , (2)

where Xγ = diag(sγ), hγ = [hF (γ), hF (γ + g), . . . , hF (γ +
(n−1)g)]T refers to the frequency response vector associated

with the γ-th subcarrier group, and wγ is the noise vector

in the frequency domain with the distribution CN (0, N0In).
The average received SNR per subcarrier is defined as ρ =
1/N0. Note that after de-interleaving, the correlation among

the elements of hγ is significantly attenuated, and as a result

it is reasonable to assume hγ ∼ CN (0, In).
A straightforward solution to recover the transmitted bits is

the ML detection, which can be formulated based on (2) as

(Îγ , ŝγ) = argmin
Iγ ,sγ

‖yγ −Xγhγ‖
2
F
, (3)

where Îγ and ŝγ are the estimates of Iγ and sγ , respectively.

To decrease the computational burden to the receiver, we will

derive a low-complexity detector in Section IV.

From above, without taking into account the CP cost, the SE

of GMM-OFDM-IM systems, measured by bps/Hz, is given

by

F =
m1 +m2

n
=

1

n

(

⌊log2n!⌋+
∑K

k=1
nklog2Mk

)

. (4)

For given values of nk and Mk, k = 1, . . . ,K, how

to choose appropriate modes S1, . . . ,Sn that lead to the

optimal BER performance and simple symbol modula-

tion/demodulation are key issues for GMM-OFDM-IM sys-

tems. In the next section, we will solve this practical problem.

III. MODE SELECTION FOR GMM-OFDM-IM

In this section, we design guidelines for mode selection

under the constraint that all subcarriers transmit with the same

instantaneous power, which means all M signal points are

located on a unit circle, i.e., r1 = · · · = rK = 1, where rk is

the radius of the Mk-ary circle constellation.

According to the analysis in [6], the optimal modes should

maximize the minimum intra-mode distance (MIAD)

d1 = min
µ,υ∈{1,...,2m}

∥

∥

∥
X(µ)

γ −X(υ)
γ

∥

∥

∥

2

F
,

s.t. |sγ,β |
2
= 1, rank

(

X(µ)
γ −X(υ)

γ

)

= 1, (5)

and the minimum inter-mode distance (MIRD)

d2 = min
µ,υ∈{1,...,2m}

∥

∥

∥
X(µ)

γ −X(υ)
γ

∥

∥

∥

2

F
,

s.t. |sγ,β |
2
= 1, rank

(

X(µ)
γ −X(υ)

γ

)

= 2, (6)

where X
(µ)
γ and X

(υ)
γ are two different realizations of Xγ .

Recall that on a circle, the uniformly distributed signal points

have the maximum minimum Euclidean distance (MED).



Hence, from (5), the Mk-ary constellation should be the

ordinary Mk-PSK constellation, which has an MIAD of
√

2− 2 cos(2π/Mk).
In (6), the second-order diversity is controlled by two

error events: 1) any two symbols are erroneously detected as

another two symbols belonging to the same two modes; 2) the

permutation of any two modes is erroneously detected. The

probability of the first error event depends on the MIAD and

can be also minimized based on the criterion of (5). Therefore,

with the result of (5) as the input, the problem of the MIRD

maximization described in (6) is equivalent to the problem of

the minimization of the probability of the second error event.

Since M1/Mk is always equal to an integer power of

two, the M1-PSK constellation subsumes any of the Mk-

PSK constellations, where k = 2, . . . ,K. Hence, in order

to maximize the MED of the combined M-ary constellation,

the optimal n modes must be taken from the regular ηM1-

PSK constellation, which provides the maximum MIRD value

of
√

2− 2 cos(2π/ηM1), where η is the minimum integer

satisfying ηM1 ≥ M. For ease of implementation, it is

preferred to derive nk different Mk-PSK constellations starting

from k = 1 to k = K sequentially. The detailed procedure is

summarized in Algorithm 1, where the mode of Mk signal

points is represented by Mk indices of the signal points of the

ηM1-PSK constellation. Note that two immediately adjacent

signal points of a signal constellation are required to be

given consecutive indices in Algorithm 1. For example, when

Algorithm 1 Mode selection for GMM-OFDM-IM with same

instantaneous subcarrier power

1: Input: nk and Mk, k = 1, . . . ,K
2: Initialization: Let Θ = {1, 2, . . . , ηM1} be the index

set of the total signal points of the regular ηM1-PSK

constellation;

3: Calculate ξ = {η, ηM1/M2, . . . , ηM1/MK};

4: for k = 1 : K do

5: Iκ,Mk
(l) = Θ(κ) + ξ(k)l, κ = 1, . . . , nk, l =

0, . . . ,Mk − 1, where Iκ,Mk
(l) denotes the index of

the l-th signal point of the κ-th Mk-PSK constellation;

6: Update Θ = Θ\{I1,Mk
, . . . , Ink,Mk

};

7: end for

8: Output: Iκ,Mk
(l) for k = 1, . . . ,K, κ = 1, . . . , nk and

l = 0, . . . ,Mk − 1

(M1(n1),M2(n2),M3(n3)) = (8(1), 4(2), 2(1)), it follows

that η = 3, and according to Algorithm 1, we can obtain

the optimal four modes, which are depicted in Fig. 2(a).

IV. LOW-COMPLEXITY RECEIVER DESIGN

Motivated by the sequential decoding algorithm originally

proposed for the convolutional codes [10], [11], in this section,

we propose a low-complexity detector for GMM-OFDM-IM

systems. Since the detection for each subcarrier group is

identical and independent, in what follows, we will only focus

on the γ-th subcarrier group and omit the subscript (γ).
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Fig. 2. (a) Four optimal modes with (M1(n1),M2(n2),M3(n3)) =
(8(1), 4(2), 2(1)); (b) Sequential detecting tree for GMM-OFDM-IM.

To begin with, we introduce an n × n matrix B, whose

(ς, τ)-th entry represents the most-likely transmitted symbol

on the ς-th subcarrier when it employs Sτ

Bς,τ = argmin
s∈Sτ

|y (ς)− s · h (ς)|2, ς, τ ∈ Q, (7)

and construct an n× n matrix D with

Dς,τ = |y (ς)−Bς,τh (ς)|
2

(8)

to store the optimal metrics. Then, the CTFs of n subcarriers

are sorted according to their absolute values in decreasing

order. Let us define Ω = {ω1, . . . , ωn} for |h (ω1)|
2
> · · · >

|h (ωn)|
2
, ωβ , β ∈ Q.

To apply the sequential detector, we build up the detecting

tree in Fig. 2(b), which has n − 1 stages following the order

dictated in Ω. In this tree, each node at the (β − 1)-th stage

has n + 1 − β successors that represent n + 1 − β possible

modes carried on the ωβ-th subcarrier along the path, where

β ∈ {1, . . . , n−1}, and each branch is labeled with the metric

as well as the associated most-likely transmitted symbol. The

aim of this sequential detector is to find a path from the tree

that has the minimum cumulated metric and is legal. This

search can be facilitated with a stack, of which each entry

contains a path along with its cumulated metric and all entries

are sorted in the order of increasing metric. The details of the

proposed sequential algorithm can be outlined in the following

five steps:

1) Calculate the matrices B and D by (7) and (8), respec-

tively, and sort the CTFs of n subcarriers to obtain Ω;

2) Load the stack with the paths at the first stage of the tree

and sort the stack in the order of increasing metric;

3) Replace the top path with its successors at the next stage

of the tree, update the metric associated with the new

paths, and rearrange the stack in the order of increasing

metric;
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4) If the length of the top path reaches n − 1, supplement

the remaining one mode; otherwise, return to Step 3);

5) Examine the legality of the top path by a look-up table

or the permutation method. If it is legal, stop; otherwise,

delete the top path and return to Step 3).

When the algorithm terminates, the top path in the stack is

regarded as the estimated mode permutation. Meanwhile, the

transmitted symbol on each subcarrier is obtained.

V. SIMULATION RESULTS AND DISCUSSION

In this section, we perform Monte Carlo simulations to

evaluate the BER performance of GMM-OFDM-IM systems

and compare it with that of classical OFDM, OFDM-IM,

and DM-OFDM systems. All considered schemes operate

over Rayleigh fading channels and perfect channel estima-

tion is assumed at the receivers. For notational simplicity,

the OFDM-IM scheme with a out of n subcarriers being

active and transmitting M -PSK symbols is referred to as

“OFDM-IM (n, a), M -PSK”, the DM-OFDM scheme with

a out of n subcarriers employing the primary M -ary PSK

constellation as “DM-OFDM (n, a), M -PSK”, and the GMM-

OFDM-IM scheme with n1, . . . , nK subcarriers respectively

employing M1, . . . ,MK-ary constellations as “GMM-OFDM-

IM (M1(n1), . . . ,MK(nK))”. The DM-OFDM scheme also

adopts our design guidelines to generate the optimal primary

and secondary constellations.

Fig. 3 presents the comparison results between classi-

cal OFDM, OFDM-IM, DM-OFDM, and GMM-OFDM-IM,

where all involved schemes employ the optimal ML detection

and achieve an SE of 2.5 bps/Hz except OFDM with QPSK (8-

PSK) that has an SE of 2 (3) bps/Hz. As can be observed from

Fig. 3, all schemes achieve the same diversity order of unity.

While achieving a higher SE, OFDM-IM performs slightly

worse than classical OFDM with QPSK; however, it acquires

an SNR gain of about 3 dB over classical OFDM with 8-PSK.
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Fig. 4. Performance of the sequential detector for GMM-OFDM-IM.

Both DM-OFDM and GMM-OFDM-IM outperform classical

OFDM and OFDM-IM in the medium-to-high SNR region,

verifying the advantages of using multiple signal constellations

for IM. However, thanks to the larger proportion of IM bits,

GMM-OFDM-IM obtains approximately 1 dB SNR gain over

DM-OFDM.

Fig. 4 illustrates the BER performance of the proposed

sequential detectors, the subcarrier-wise detectors [6], and the

optimal ML detectors for “GMM-OFDM-IM (8 (3), 4 (1))”

and “GMM-OFDM-IM (4 (2), 2 (2))”. It is observed from

Fig. 4 that for all GMM-OFDM-IM systems, the sequential

detectors perform better than the subcarrier-wise detectors for

the entire SNR range. On the other hand, the sequential detec-

tor suffers from a performance loss of approximately 1.5 dB in

comparison with the ML detector in the medium SNR region.

However, at both low and high SNR the sequential detector

has the capability of achieving near-optimal performance.

Recalling that the computational complexity of the sequential

detector is intermediate between that of ML and subcarrier-

wise detectors, the sequential detector provides a good trade-

off between the error performance and the complexity.

VI. CONCLUSION

In this paper, a novel OFDM transmission scheme, namely

GMM-OFDM-IM, which enjoys a more flexible SE than MM-

OFDM-IM by allowing a signal constellation of a different

size to modulate different OFDM subcarriers, has been pro-

posed. Design guidelines and a low-complexity near optimal

detector for GMM-OFDM-IM have been given. Monte Carlo

simulation results have demonstrated the superior performance

of GMM-OFDM-IM over the existing frequency-domain IM
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