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A Fast, Accurate, and Separable Method  
for Fitting a Gaussian Function

The Gaussian function (GF) is widely 
used to explain the behavior or sta-
tistical distribution of many natural 

phenomena as well as industrial process-
es in different disciplines of engineering 
and applied science. For example, the GF 
can be used to model an approximation 
of the Airy disk in image processing, a 
laser heat source in laser transmission 
welding [1], practical microscopic appli-
cations [2], and fluorescence dispersion 
in flow cytometric deoxyribonucleic 
acid histograms [3]. In applied sciences, 
the noise that corrupts the signal can be 
modeled by the Gaussian distribution 
according to the central limit theorem. 
Thus, by fitting the GF, researchers can 
develop a sound interpretation of the 
corresponding process or phenom-
enon behavior.

This article introduces a novel fast, 
accurate, and separable (FAS) algo-
rithm for estimating the GF parameters 
to fit observed data points. A simple 
mathematical trick can be used to calcu-
late the area under the GF in two ways. 
Then, by equating these two areas, the 
GF parameters can be easily obtained 
from the observed data.

GF-fitting approaches
A GF has a symmetrical bell shape 
around its center, with a width that 
smoothly decreases as it moves away 

from its center on the x-axis. The math-
ematical form of the GF is
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with three shape-controlling parameters, 
,A  ,n  and ,v  where A is the maximum 

height (amplitude) that can be achieved 
on the y-axis, n  is the curve center 
(mean) on the x-axis, and v  is the stan-
dard deviation (SD), which controls the 
width of the curve along the x-axis. This 
article presents a new method for the 
accurate estimation of these three pa-
rameters. The difficulty of this lies in 
estimating the three shape-controlling 
parameters ( ,A  ,n  and )v  from observa-
tions, which are generally noisy, by solv-
ing an overdetermined nonlinear system 
of equations.

The standard solutions for fitting 
the GF parameters from noisy observed 
data are obtained by one of the follow-
ing two approaches:
1) Solving the problem as a nonlinear 

system of equations using one of the 
least-squares optimization algo-
rithms: This solution employs an 
iterative procedure, such as the 
Newton–Raphson algorithm [4]. The 
drawbacks of this approach are the 
iterative procedure, which may not 
converge to the true solution, and its 
high cost from the computational 
complexity perspective.

2) Solving the problem as a linear sys-
tem of equations based on the fact 

that the GF is an exponential of a 
quadratic function: By taking the nat-
ural logarithm of the observed data, 
the problem can be solved in polyno-
mial time as a 3 3#  linear system of 
equations. Two traditional algorithms 
have been proposed in this context: 
Caruana’s algorithm [5] and Guo’s 
algorithm [6]. Furthermore, instead 
of taking the natural logarithm, the 
partial derivative is used in Roonizi’s 
algorithm [7].

In this article, we consider only the sec-
ond approach, which is more suitable 
for most scientific applications, due to 
its simplicity and because it avoids the 
drawbacks of the first approach. Let us 
start with a brief introduction of the 
existing three algorithms for the sec-
ond approach.

Caruana’s algorithm
Caruana’s algorithm exploits the fact 
that the GF is an exponential of a qua-
dratic function and transforms it into a 
linear form by taking the natural loga-
rithm of (1) to obtain
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where ( ) / ,lna A 22 2n v= - ^ h  / ,b 2n v=  
and / .c 1 2 2v=- ^ h  Accordingly, the 
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unknowns become ,a  ,b  and c  in 
the linear equation (2) instead of ,A  

,n  and v  in the nonlinear equation (1). 
Next, if the observations y  are noisy, 
then they can be modeled as .y y w= +t  
Each contains the ideal data point, ,y  
that is corrupted by the noise, ,w  with 
SD of .wv  Note that in (2), we consider 
only the observations that have values 
above zero.

Once we have an overdetermined 
linear system, the unknowns can be es-
timated using the least-squares method. 
Caruana’s algorithm estimates the three 
unknowns ( ,a  ,b  and )c  in (2) using the 
least-squares method by forming the er-
ror function, ,f  for (2) as
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Then, by differentiating the sum of 2f  
with respect to ,a  ,b  and c  and equat-
ing the results to zero, we obtain three 
equations, which represent the follow-
ing linear system:
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where N  is the number of observed 
data points and /  denotes .N/n 1=  In this 
case, the parameters ,a  ,b  and c  can be 
determined simply by solving (4) as a 
determined linear system of equations. 
Subsequently, the original parameters 
of the GF are determined as

, , .A e
c
b

c2 2
1a

c
b
4

2

n v= = - = --  (5)

The weighted least-squares method 
is the second candidate method to esti-
mate the unknowns, and it is expected 
to have a better estimation accuracy 
than the least-squares method.

Guo’s algorithm
Guo’s algorithm, a modified version 
of the Caruana algorithm, finds the 
unknowns ,a  ,b  and c  in (2) using the 

weighted least-squares method. It uses 
the noisy observed data, ,yt  to weight 
the error function in (3). Therefore, the 
error equation in (3) becomes yd f= =t  

[ ( ) ( )],lny y a bx cx2- + +t t  and the lin-
ear system of equations in (4) becomes
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(6)

Moreover, the values of ,A  ,n  and v  
can be computed from (5).

One of the problems that affects 
the estimation accuracy is the long-tail 
GF. This occurs when the number of 
small values in the observed data is 
large compared to the observed data 
length, ,N  which means that a large 
amount of noise exists in those obser-
vations. Thus, an iterative procedure 
is required to improve the estima-
tion accuracy.

Guo’s algorithm with  
iterative procedure
The estimation accuracy of the Guo’s al-
gorithm deteriorates for a long-tail GF. 
To increase the accuracy of fitting the 
long-tail Gaussian parameters, an itera-
tive procedure for (6) is given as
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where y y,( )n k n=t t  for k 0=  and y ,( )n k =t  
ea b x c x( ) ( ) ( )k k n k n

2+ +  for ,k 02  with the paren-
thesized subscripts denoting the indices 
of iteration.

Roonizi’s algorithm
Roonizi’s algorithm is designed to fit 
the GF riding on a polynomial back-
ground. It can be used to fit a GF by 
taking the partial derivative of (1), and 
then taking the integral of the result 
to obtain

 ( ) ( ) ( ),y x x x1 1 2 2b z b z= +  (8)

where / , / ,11
2

2
2b v b n v=- =  and

( ) ( ) , ( ) ( ) .x uy u du x y u du
x x

1 2z z= =
3 3- -

# #
 (9)

In a manner similar to the steps in the 
Caruana and Guo algorithms, the er-
ror of (8) becomes ( ( )y x1 1g b z= - +t  

( )).x2 2b z  A linear system of equations 
results as follows:

( )
( ) ( )

( ) ( )
( )

( )
( )

.

x
x x

x x
x

x y
x y

n

n n

n n

n

n n

n n

1
2

1 2

1 2
2

1

2

1

2

2

; ;

; ;

z

z z

z z

z

b

b

z

z
=

t

t

=

=

;

G

G E/
/

/
/

/
/ (10)

By solving (10) in terms of 1b  and ,2b  
the estimated nt  and vt  of the GF can be 
calculated as

 , .1
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Finally, using nt  and vt  from (11), the 
estimated At  of the GF can be calcu-
lated as
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Note that the Roonizi’s algorithm 
has no iterative procedure to in-
crease the accuracy of fitting long-tail 
GF  parameters.

Motivation
Guo’s and Roonizi’s algorithms have bet-
ter estimation accuracy than  Caruana’s 
algorithm, while their computational 
complexity burden is comparable. More-
over, the three algorithms dependently 
estimate the GF parameters ( ,A  ,n  and 

).v  This means that, in some applica-
tions that require the estimation of only 
one parameter, the fitting algorithm may 
require unnecessary parameters to be 
estimated as well. Therefore, there is a 
need for a new method that provides bet-
ter estimation accuracy with an efficient 
computational complexity as well as 
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the capability for a separable param-
eter  estimation.

Proposed algorithm
In this article, we propose a novel FAS 
algorithm for a GF that accurately fits 
the observed data. The basic idea 
of the proposed FAS algorithm is to 
find a direct formula for the SD 
(i.e., )v  parameter from the noisy 
observed data. Then the amplitude A 
and mean n  can be determined using 
the weighted least-squares method for 
only two unknowns.

Derivation of the SD formula
To derive an approximation formula 
for the SD, a simple mathematical 
trick is applied. For N  observations 
that represent the GF, as shown in 
Figure 1, the area under the GF can 
be divided into thin ver tical rect-
angles with a width of ,xnT  where 

xnT  is the nth step size of two suc-
cessive observation points on the x-
axis. Therefore, the total area under 
the GF, ,K  is numerically calculated 
as the summation of the areas of the 
vertical rectangles:

 .x y
n

N

n n
1

T.K
=

t/  (13)

Note that (13) reflects at least 99.7% 
of the GF area in case of an available 
observation width greater than .3!n v  
Now, let us calculate the area under the 
GF using a different method. From the 
GF and Q-function properties, the total 
area under the GF is given as

.Ae dx A 2
( )x

2 2

2

v rK = =
3

3

v

n
-
-

-

#  (14)

Equating (13) and (14), and replacing the 
amplitude A by the maximum value of 
the observed data, ,ymaxt  the estimated 
v  is obtained as
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Thus, in certain applications that require 
the estimate of the SD of the GF, the FAS 

algorithm directly outputs this estimate, 
without estimating the other two param-
eters. This is referred to as the separable 
property of the FAS algorithm.

Error analysis
To study the error of (15), first let us 
discuss the systematic error resulting 
from equating (13) and (14). This error 
becomes notable when a small por-
tion of the GF is sampled, and the GF 
curve is approximated by rectangles 
(as in Figure 1). Based on extensive 
testing of the algorithm with varying 
parameters, as discussed further later 
in the article, the systematic error can 
be considered negligible when W 62  
and the observation samples are dense 
enough [e.g., ,( / ) ]N W 102  where W  is 
the ratio of the SD to the observation 
width on the x-axis (i.e., the obser-
vation width equals ,Wv  or equiva-
lently, it varies from ( / )W 2n v-  to 

( / ) ) .W 2n v+

To calculate the relative error in 
the numerator in (15),  let  the nu-
merator equal ,A x w2 N

nT /r v + n 1=  
where A2r v  represents the actual 
area of the GF and x wN

nT /n 1=  is nor-
mally distributed with its SD being 

N xwTv =  ( / ).NN Wwv v  For sim-
plicity of analysis, xT  is considered 
fixed for all observations. The rela-
tive error of the numerator, ,Na  can be 
written as

,k
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W k
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w
1 1.a

r

v

r
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where k1  is a constant value, which can 
be considered 2 for the 95.5% confi-
dence interval, and /ASNR wv=  is the 
signal-to-noise ratio (SNR).

For the denominator, let us assume 
that it equals ( ),A A2 !Tr  where 

AT  is the maximum of the normally 
distributed noise samples with SD of 

.wv  The relative error of the denomi-
nator in (15), ,Da  can be written as

 ,
A

k k
SNRD

w2 2.a
v =  (17)

where k2  is a constant whose value can 
be assumed to be 3. (Based on com-

prehensive simulations, k 32 =  is the 
worst-case scenario for the error. Also, 
the probability of such a scenario is very 
low.) Hence, the total relative error in 
(15), ,a  can be approximated using a 
Taylor series as

.k
N

W k1
2SNRN D 1 2.a a a
r

+ = +c m
 (18)

If the samples are dense enough (i.e., 
large enough / ),N W  a reduced relative 
error can be attained for a high SNR.

Estimates of the remaining  
two parameters
To estimate the remaining two param-
eters A and n  using vt  estimated from 
(15), we can differentiate the sum of 

2d  with respect to a  and b  and then 
equate the results to zero (i.e., using 
the same steps as in Guo’s algorithm). 
The resulting linear system of equa-
tions becomes
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where /c 1 2 2v=- t^ h  and vt  is the es-
timated SD, which is calculated from 
(15). Therefore, the values of a  and b  
are obtained by solving the 2 2#  lin-
ear system in (19); then, the original 
parameters A and n  can be calculated 
from (5).

Figure 2 shows the superiority of the 
proposed FAS algorithm over the tra-
ditional algorithms in the presence 
of a noise with SD .0 1wv =  for differ-
ent values of ;N  the proposed algorithm 

x

y

A 99.7%

µ – 3σ µ + 3σµ

FIGURE 1. A graph illustrating a Gaussian 
function.
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provides the best fit to the observed data 
points compared to the other fitting algo-
rithms for all values of .N  Figure 2 shows 
that ymaxt  is obviously different from the 
actual amplitude .A  However, vt  from 
(15) provides reasonable results using 
ymaxt  even if a small number of observa-
tion points are available, as in Figure 2(c).

Since the FAS algorithm provides 
poorer accuracy in fitting long-tail 
GF parameters, an iterative proce-
dure is required to improve the fit-
ting  accuracy.

FAS algorithm with  
iterative procedure
For the long-tail GF, we propose an 
 iterative algorithm that improves the 

 fitting accuracy of the FAS algo-
rithm. The recursive version of (19) 
is given as
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where y y,( )n k n=t t  for ,k 0=  y ,( )n k =t  
ea b x cx( ) ( )k k n n

2+ +  for ,k 02  and vt  is esti-
mated from (15) only once. This means 
that (15) can provide accurate results in 
fitting the long-tail GF without itera-
tion, while the other two parameters still 
need to be estimated through iterations. 

However, after a few iterations, vt  can 
be further improved by including an 
updated SD from (15) in the iterations, 
using A obtained by (20).

Figure 3 shows results of the iterative 
Guo’s and proposed FAS algorithms for 
fitting a long-tail GF with ,N 200=  

,A 1=  ,2v =  and .0 1wv =  for 18n =  
and 19, respectively. As we can see from 
the figure, the number of iterations re-
quired for the FAS algorithm to fit the 
long-tail GF is lower than that for Guo’s 
algorithm. For example, in Figure 3(a), 
the FAS algorithm needs only three it-
erations to fit the observation; however, 
Guo’s algorithm provides poor fitting 
for the same number of iterations. Note 
that, from Figure 3(b), as the tail of the 
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GF lengthens, more iterations are need-
ed (i.e., six iterations are needed instead 
of three to provide a good fitting to the 
longer-tail GF). Even in the presence of 
considerable noise and with only a small 
portion of the GF, the iterative procedure 
of the proposed algorithm can nicely fit 
the GF after only a few iterations.

Accuracy comparison
In this section, Monte Carlo simulation 
results for at least 104  simulated trials 
are considered for comparing the aver-
age absolute relative error (ARE) of the 
fitting accuracy for the SD estimated us-
ing (15) and by traditional algorithms. 
The ARE percentile of the SD is given 
as  %( ) ( / ) %,100ARE #; ;v v v v= -t  
where $; ;  denotes the absolute value 
and v  is the true SD. The GF param-
eters used for this simulation are ,A 1=  

,10n =  and .2v =  As demonstrated by 
the total relative error estimated in (18), 
three parameters can be used for assess-

ing the accuracy of estimation (i.e., SNR, 
,W  and ).N
For the evaluation of the estima-

tion accuracy, we calculate the average 
,ARE%( )v  where one of the three pa-

rameters varies while the other two pa-
rameters are fixed. Figure 4 shows such 
results, where the SD is estimated using 
the proposed FAS algorithm in compar-
ison with the three previously presented 
traditional algorithms. In Figure  4(a) 
and (b), W 12=  and the SNR varies 
from 1 to 100 for N 30=  and 200, re-
spectively. Figure 4(c) and (d) depicts 
the effect of ,W  which varies from 2 to 
24, for N 30=  and 200, respectively, in 
the case of 25SNR =  (i.e., . ).0 04wv =  
Figure 4(e) and (f) shows the effect of ,N  
which varies from 20 to 100 and from 
200 to 1,000, respectively, with W 12=  
and .25SNR =  It is obvious from these 
figures that the SD estimated from (15) 
has the lowest ARE% in all cases, ex-
cept for W 61  when Guo’s algorithm 

is the best. This is called the accurate 
property of the FAS algorithm. In many 
practical applications, an adequate por-
tion of the GF (i.e., )W 6$  is sampled 
with more than 200 observation points 
(i.e., ).N 200$  Roonizi’s algorithm is 
more general than the other techniques 
since it can also fit a Gaussian riding on 
a polynomial background. This might 
explain its poorer performance in com-
parison to the other algorithms that fit a 
sole GF as described by (1).

The plots in Figure 4 also depict the 
worst-case ARE% of the proposed algo-
rithm. The simulated worst-case ARE% 
represents the maximum ARE% that 
occurs during the 104  simulated trials, 
which is compared to (18) with k 21 =  
and k 32 =  to show the accuracy of our 
derived error estimated in (18). Note that  
the probability of such a worst-case 
error is very low. Notably, the  worst- 
case theoretical and simulated ARE% 
match, except when W 61  due to the  
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considerable systematic error. The supe-
riority of the proposed algorithm versus 
the traditional ones holds for the worst-
case ARE% as well; however, for the 
clarity of the plots in Figure 4, curves 
corresponding to the latter algorithms 
were not included. As shown in Fig-
ure 4(f), after a particular value of ,N  
the error of the denominator in (15) be-
comes dominant. As N  increases, there 
will be many samples around the peak 
of the GF, and the ARE% of the pro-
posed algorithm slightly increases when 
N  increases, finally approaching the 
worst-case scenario.

Complexity comparison
We address the computational complex-
ity comparison of Guo’s, Roonizi’s, and 
the proposed FAS algorithms in terms 
of the number of additions and multipli-
cations required to complete the fitting 
procedure. We assume that subtraction 
and division operations are respectively 
equivalent to addition and multiplica-
tion operations in complexity. It should 
be noted that solving an n n#  linear 
system of equations using Gauss 
elimination requires /( )n n n2 3 5 63 2+ -  
additions and /( )n n n3 33 2+ -  mul-
tiplications [8]. Therefore, the total 
number of additions (Add) and multipli-
cations (Mul) for the Guo, Roonizi, and 
FAS algorithms are given as follows:
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where Aln  and Mln  represent the num-
ber of additions and multiplications 
required to calculate the natural loga-
rithm, respectively, while Aexp  and 
Mexp  represent the number of additions 
and multiplications, respectively, 
required to calculate the natural ex-
ponential in (12). Note that the term 
of N 2  in (22) comes from the calcu-
lation of ( )x1z  in (9), which requires 
an accumulated  numerical integration 
of ( ( ))uy u  from the first observation 

point to the current value of x  for all 
N  observations.

It can be seen from (21) to (23) that 
the proposed algorithm requires fewer 
additions and multiplications when 
compared with Guo’s and Roonizi’s al-
gorithms. Assuming A Aln exp=  and 

,M Mln exp=  the proposed algorithm 
saves six additions and ( )NO  multipli-
cations over Guo’s algorithm, while it 
saves ( )NO 2  additions and multiplica-
tions over Roonizi’s algorithm. This is 
referred to as the fast property of the 
proposed FAS algorithm.

Conclusions
This article proposed a simple approxi-
mation expression for the SD of a GF to 
fit a set of noisy observed data points. 
This expression results from a simple 
mathematical trick, which is based on 
the equality between the area under the 
GF calculated numerically and based 
on the Q-function properties. Then, the 
amplitude and mean of the GF can be 
calculated using the weighted least-
squares method. Through comprehen-
sive simulations and mathematical 
analysis, it has been shown that the pro-
posed algorithm is not only faster than 
Guo’s and Roonizi’s algorithms, but 
also provides better estimation accuracy 
when an adequate interval of the GF is 
sampled. Additionally, an iterative pro-
cedure is proposed, which is suitable 
to fit the GF when the observed data 
points are contaminated with substantial 
noise, as in the case of a long-tail GF. It 
has been shown by extensive computer 
simulations that the proposed iterative 
algorithm fits the GF faster than the it-
erative Guo’s algorithm. The proposed 
algorithm could be useful for several 
applications, such as Airy disk approxi-
mation, laser transmission welding, flu-
orescence dispersion, and many others 
involving digital signal processing.

Acknowledgments
We thank Prof. Roberto Togneri, IEEE 
Signal Processing Magazine’s area edi-
tor, columns and forum, and the anony-
mous reviewers for providing valuable 
suggestions to improve the manuscript. 
We are grateful to Prof. Balazs Bank 
for his assistance and insightful feed-

back during the revision of this article. 
The support of the Natural Sciences 
and Engineering Research Council of 
Canada through its Discovery program 
is also gratefully acknowledged. The 
work of Ertugrul Basar is supported in 
part by the Turkish Academy of Sci-
ences Young Scientists Award Program.

Authors
Ibrahim Al-Nahhal (ioalnahhal@mun 
.ca) received his B.Sc. and M.Sc. de-
grees in electronics and communica-
tions engineering from Al-Azhar 
University and Egypt–Japan University 
for Science and Technology, Egypt, in 
2007 and 2014, respectively. He is a 
Ph.D. student at Memorial University, 
Canada. Between 2008 and 2012, he 
was an engineer in industry and a teach-
ing assistant in the Faculty of Engi-
neering, Al-Azhar University in Cairo, 
Egypt. From 2014 to 2015, he was a 
physical-layer expert at Nokia, Bel-
gium. He holds three patents. His re-
search interests include designs for 
low-complexity receivers for emerging 
technologies; spatial modulation; multi-
ple-input, multiple-output systems; and 
sparse code multiple access.

Octavia A. Dobre (odobre@mun 
.ca) received her Dipl. Ing. and Ph.D. 
degrees from the Polytechnic Institute 
of Bucharest, Romania, in 1991 and 
2000, respectively. She is a professor 
and research chair at Memorial Univer-
sity, Canada. She was a visiting profes-
sor at the Massachusetts Institute of 
Technology and a Royal Society and 
Fulbright scholar. Her research interests 
include technologies for 5G and be-
yond, as well as optical and underwater 
communications. She has published 
more than 250 refereed papers in these 
areas. She was the editor-in-chief of 
IEEE Communications Letters. She has 
been a senior editor and an editor with 
prestigious journals as well as general 
chair and technical cochair of flagship 
conferences in her area of expertise. 
She is a Distinguished Lecturer of the 
IEEE Communications Society and a 
fellow of the Engineering Institute 
of Canada.

Ertugrul Basar (ebasar@ku.edu.tr) 
received his B.Sc. degree from Istanbul 



163IEEE SIGNAL PROCESSING MAGAZINE   |   November 2019   |

University, Turkey, in 2007, and his M.S. 
and Ph.D. degrees from Istanbul Techni-
cal University, Turkey, in 2009 and 2013, 
respectively. He is currently an associate 
professor with the Department of Electri-
cal and Electronics Engineering, Koç 
University, Istanbul, Turkey, and the di-
rector of Commu nications Research and 
Innovation Laboratory. His primary re-
search interests include multiple-input, 
multiple-output systems; index modula-
tion; waveform design; visible light 
communications; and signal processing 
for communications.

Cecilia Moloney (cmoloney@mun 
.ca) received her B.Sc. degree in mathe-
matics from Memorial University, 
Canada, and her M.A.Sc. and Ph.D. 
degrees in systems design engineering 
from the University of Waterloo, Ontario, 
Canada. Since 1990, she has been a fac-
ulty member at Memorial University, 
where she is now a professor of electrical 
and computer engineering. From 2004 
to 2009, she held the Natural Sciences 
and Engineering Research Council of 

Canada/Petro-Canada chair for Women in 
Science and Engineering, Atlantic 
Region. Her research interests include 
nonlinear signal and image processing 
methods, signal representations, radar sig-
nal processing, and methods for ethics in 
engineering and engineering education.

Salama Ikki (sikki@lakeheadu.ca) 
received his B.Sc. degree from Al-Isra 
University, Amman, Jordan, in 1996 and 
his Ph.D. degree in electrical engineering 
from Memorial University, Canada, in 
2009. He is an associate professor in the 
Department of Electrical Engineering, 
Lakehead University, Ontario, Canada. 
From 2009 to 2010, he was a postdoctor-
al researcher at the University of 
Waterloo, Ontario, Canada. From 2010 
to 2012, he was a research assistant with 
the Institut national de la recherche sci-
entifique, University of Québec, Canada. 
He is the author of 100 journal and con-
ference papers and has more than 4,000 
citations and an H-index of 30. His 
research interests include cooperative 
networks; multiple-input, multiple-out-

put systems; spatial modulation, and 
wireless sensor networks.

References
[1] H. Liu, W. Liu, X. Zhong, B. Liu, D. Guo, and X. 
Wang, “Modeling of laser heat source considering 
light scattering during laser transmission welding,” 
Mater. Des., vol. 99, pp. 83–92, June 2016.

[2] B. Zhang, J. Zerubia, and J.-C. Olivo-Marin, 
“Gaussian approximations of fluorescence micro-
scope point-spread function models,” Appl. Opt., vol. 
46, no. 10, pp. 1819–1829, Apr. 2007.

[3] F. Lampariello, G. Sebastiani, E. Cordelli, and 
M. Spano, “Comparison of Gaussian and t-distribu-
tion densities for modeling fluorescence dispersion in 
flow cytometric DNA histograms,” Cytometry, vol. 
12, no. 4, pp. 343–349, Jan. 1991.

[4] W. Press, S. Teukolsky, W. Vetterling, and B. 
Flannery, Numerical Recipes: The Art of Scientific 
Computing, 3rd ed. New York: Cambridge Univ. 
Press, 2007.

[5] R. Caruana, R. Searle, T. Heller, and S. Shupack, 
“Fast algorithm for the resolution of spectra,” Anal. 
Chem., vol. 58, no. 6, pp. 1162–1167, May 1986.

[6] H. Guo, “A simple algorithm for fitting a Gaussian 
function,” IEEE Signal Process. Mag., vol. 28, no. 5, 
pp. 134–137, Sept. 2011.

[7] E. K. Roonizi, “A new algorithm for fitting a 
Gaussian function riding on the polynomial back-
ground,” IEEE Signal Process. Lett., vol. 20, no. 11, 
pp. 1062–1065, Sept. 2013.

[8] G. Strang, Introduction to Linear Algebra, 3rd ed. 
Cambridge, MA: Wellesley-Cambridge Press, 1993.

 SP

seismic events from Llaima volcano (Chile),” in Proc. 
2018 Int. Joint Conf. Neural Networks, pp. 1–8. doi: 
10.1109/IJCNN.2018.8489285.

[45] R. Soto, F. Huenupan, P. Meza, M. Curilem, 
and L. Franco, “Spectro-temporal features applied 
to the automatic classification of volcanic seismic 
events,” J.  Volcanology Geothermal Res., vol. 
358, pp. 194–206, June 2018. doi: 10.1016/j.jvol-
geores.2018.04.025.

[46] M. Curilem, F. Huenupan, D. Beltrán, C. San 
Martin, G. Fuentealba, L. Franco, C. Cardona, G. 
Acuña et al., “Pattern recognition applied to seismic 
signals of Llaima volcano (Chile): An evaluation of 
station-dependent classifiers,” J. Volcanology 
Geothermal Res., vol. 315, pp. 15–27, Apr. 2016. doi: 
10.1016/j.jvolgeores.2016.02.006.

[47] S. M. Bhatti, M. S. Khan, J. Wuth, F. Huenupan, M. 
Curilem, L. Franco, and N. B. Yoma, “Automatic detec-
tion of volcano-seismic events by modeling state and 
event duration in hidden Markov models,” J. 
Volcanology Geothermal Res., vol. 324, pp. 134–143, 
Sept. 2016. doi: 10.1016/j.jvolgeores.2016.05.015.

[48] D. A. Firoozabadi, F. Seguel, I. Soto, D. 
Guevara, F. Huenupan, M. Curilem, and L. Franco, 
“Evaluation of Llaima volcano activities for localiza-
tion and classification of LP, VT and TR events,” J. 
Electr. Eng., vol. 68, no. 5, pp. 325–338, 2017. doi: 
10.1515/jee-2017-0064.

[49] J. C. Lahr, B. A. Chouet, C. D. Stephens, J. A. 
Power, and R. A. Page, “Earthquake classification, loca-
tion, and error analysis in a volcanic environment: 
Implications for the magmatic system of the 1989–1990 
eruptions at redoubt volcano, Alaska,” J. Volcanology 
Geothermal Res., vol. 62, no. 1–4, pp. 137–151, 1994. 
doi: 10.1016/0377-0273(94)90031-0.

[50] C. Bouvet de Maisonneuve, M. A. Dungan, O. 
Bachmann, and A. Burgisser, “Insights into shallow 
magma storage and crystallization at Volcán Llaima 
(Andean Southern Volcanic Zone, Chile),” J. 
Volcanology Geothermal Res., vol. 211–212, pp. 76–91, 
Jan. 2012. doi: 10.1016/j.jvolgeores.2011.09.010.

[51] L. E. Franco, J. L. Palma, F. Gil-Cruz, and J. J. 
San Martín, “Descripción de la actividad sísmica rel-
acionada a erupciones estrombolianas violentas: Vn. 
Llaima, Chile (2007–2010),” Earth Sci. Res. J., vol. 
18, pp. 338–339, July 2014.

[52] M. Curilem, R. F. de Mello, F. Huenupan, C. San 
Martin, L. Franco, E. Hernández, and R. A. Rios, 
“Discriminating seismic events of the Llaima volcano 
(Chile) based on spectrogram cross-correlations,” J. 
Volcanology Geotherm. Res, vol. 367, pp. 63–78, Nov. 
2018. doi: 10.1016/j.jvolgeores.2018.10.023.

[53] M. Titos, A. Bueno, L. García, M. C. Benítez, 
and J. Ibañez, “Detection and classification of contin-
uous volcano-seismic signals with recurrent neural 
networks,” IEEE Trans. Geosci. Remote Sens., 

vol.  57, no. 4, pp. 1936–1948, 2019. doi: 10.1109/
TGRS.2018.2870202.

[54] M. Malfante, M. Dalla Mura, J. I. Mars, J.-P. 
Métaxian, O. Macedo, and A. Inza, “Automatic 
classification of volcano seismic signatures,” J. 
Geophys. Res.: Solid Earth, vol. 123, no. 12, pp. 
10,645–10,658, 2018. doi: 10.1029/2018JB015470.

[55] C. Hibert, F. Provost, J.-P. Malet, A. Maggi, A. 
Stumpf, and V. Ferrazzini, “Automatic identification 
of rockfalls and volcano-tectonic earthquakes at the 
Piton de la Fournaise volcano using a random forest 
algorithm,” J. Volcanology Geothermal Res., vol. 
340, pp. 130–142, June 2017. doi: 10.1016/j.jvol-
geores.2017.04.015.

[56] L. García, I. Álvarez, M. Titos, A. Díaz-Moreno, 
M. C. Benítez, and Á. de la Torre, “Automatic detection 
of long period events based on subband-envelope pro-
cessing,” IEEE J. Sel. Topics Appl. Earth Observ. 
Remote Sens., vol. 10, no. 11, pp. 5134–5142, 2017. doi: 
10.1109/JSTARS.2017.2739690.
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