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Abstract— Orthogonal time frequency space (OTFS) is a novel
waveform that provides a superior performance in doubly-
dispersive channels. Since it spreads information symbols across
the entire delay-Doppler plane, OTFS can achieve full diversity.
However, reliability still needs to be improved in OTFS systems
to meet the stringent demands of future communication systems.
To address this issue, we propose an autoencoder (AE)-based
enhanced OTFS (AEE-OTFS) modulation scheme. By training
an AE under an additive white Gaussian noise (AWGN) chan-
nel, a feasible mapper and demapper are learned to improve
the error performance and decrease the detection complexity
of the OTFS system. The learned mapper is used to map
incoming bits into high-dimensional symbols while the learned
demapper recovers the information bits in the delay-Doppler
domain. Additionally, we derive a theoretical upper bound for
the frame error rate (FER). Simulation results confirm that
AEE-OTFS outperforms conventional OTFS in terms of FER
under perfect and imperfect channel conditions. AEE-OTFS also
enjoys low decoding complexity in addition to its superior error
performance.

Index Terms— Orthogonal time frequency space (OTFS),
time-varying channel, autoencoder, minimum Euclidian distance,
AWGN, diversity.

I. INTRODUCTION

HIGH mobility communication is one of the desired
features of enhanced mobile broadband (eMBB) and

ultra-reliable and low latency communications (URLLC) use
cases in the IMT-2020 standard determined by the Interna-
tional Telecommunication Union (ITU) for 5G and beyond
communication systems [1]. Orthogonal frequency division
multiplexing (OFDM) has been widely used in 4G, 5G, and
many other wireless communication standards due to its supe-
rior performance in time-invariant frequency-selective chan-
nels. However, in the presence of high mobility, the wireless
channel becomes time-varying. The performance of OFDM
modulation deteriorates because of the inter-carrier interfer-
ence (ICI) caused by Doppler spread in the time-varying
channel. Recently, orthogonal time frequency space (OTFS)
modulation has been proposed to bring a clever solution
to this problem [2]. In the OTFS modulation, information
symbols are multiplexed in the delay-Doppler domain and
spread across the time-frequency domain. This process con-
verts the doubly-dispersive channel into a virtual channel that
can be considered non-fading. Hence, all information symbols
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experience almost the same channel gain, and OTFS can
achieve full diversity [2], [3].

Recently, deep learning (DL) approaches have been used
in various fields, such as speech/image recognition, medical
diagnosis, natural language processing, etc. With the help of
DL, data properties are learned automatically using computers
with high computing power. A deep neural network (DNN) has
the capability of successful feature extraction with its multi-
layered structure. In general, DNNs process data in compli-
cated ways using advanced mathematical modeling. Moreover,
DNNs have been successfully implemented for wireless com-
munication systems [4]. For instance, DNN-based techniques
can be applied to the blocks of the transceiver pipeline, such
as coding, channel estimation, equalization, modulation, and
detection. For OTFS modulation, DNN-based techniques are
presented for signal detection in [5] and [6]. Furthermore,
in [7], the authors have proposed a clever DNN-based precoder
technique that does not require instantaneous channel state
information (CSI) to ensure good reliability.

The autoencoder (AE) presents the transmitter and the
receiver of a communication system as its encoder and
decoder, respectively [8]. Therefore, the transmitter and the
receiver can be learned by training this AE-based structure.
Whereas the encoder learns a representation for a given
set of data samples, the decoder aims to reconstruct the
original data samples from this representation. For OFDM
modulation, in [9], an AE-based scheme is trained to learn
the transmitter and receiver structures of the OFDM system.
On the other hand, for OTFS modulation, the authors proposed
a DNN-based AE architecture in which the encoder is trained
to decrease the peak-to-average power ratio (PAPR) while the
decoder is trained to reconstruct the original signal [10]. Since
the whole OTFS frame is inputted into the AE in [10], the com-
putational complexity increases significantly with frame size.

It has been shown that the OTFS system can provide full
diversity, equal to the number of paths, in doubly-dispersive
channels specifically for large frame sizes [3]. Although
conventional OTFS provides remarkable performance in high
mobility environments, there is still a need for the design
of more sophisticated OTFS-based modulation schemes to
meet the rigid requirements of the 6G standard [11], [12].
For instance, to improve the error performance of OTFS, one
can design a scheme that maximizes the squared minimum
Euclidean distance (SMED).

In this letter, we propose a scheme called AE-based
enhanced OTFS (AEE-OTFS) that models the mapper and
learned demapper of an OTFS system as the encoder and
decoder of an AE, respectively. Here, the AE is trained offline
in an AWGN channel so that the encoder of AE provides a
set of n-dimensional (n-dim) symbols that maximize SMED
between them. Furthermore, the decoder of AE enables
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Fig. 1. Transceiver scheme of AEE-OTFS system.

low-complexity detection of n-dim symbols of the equalized
OTFS signal on the receiver side. Note that the modulator
and demodulator blocks can be learned using the OTFS
framework under a doubly-dispersive channel rather than an
AWGN channel; however, this causes the AE structure to be
more complex and increases training time. In contrast to [10],
we train our AE-based scheme over the AWGN channel,
which does not include the doubly-dispersive channel and
signal-processing blocks of the OTFS transceiver in the
training process. Note that the learned mapper (LM) and
demapper (LD) blocks, trained in the AWGN channel, are
employed in the real-time OTFS system that experiences a
doubly-dispersive channel. Furthermore, our only focus is
improving the error performance, while PAPR reduction is
considered in [10]. In contrast to [10], the proposed scheme
does not exploit the whole OTFS frame to train the AE,
which enables a less complex AE structure.

The rest of this letter is summarized as follows.
In Section II, we describe the transceiver scheme of the
proposed method and the AE-based mapper and demapper.
Our performance analysis is presented in Section III. Computer
simulation results are discussed in Section IV, and finally,
we conclude this work in Section V.

Notations: a, a, and A stand for a scalar, a vector, and a
matrix, respectively, and ai denotes ith element of a. IN is
the N ×N identity matrix. A = diag([a0, . . . , aM ]) denotes
a diagonal matrix with diagonal elements [a0, . . . , aM ].
δ(·) and Q(·) refer to the Dirac delta function and the Gaussian
tail function, respectively. The superscripts (·)T and (·)H
state the transpose and the Hermitian transpose operators,
respectively. The operators ⊗, ∥ ·∥, |·|, and E{·} represent the
Kronecker product, Euclidean norm, cardinality of a set, and
the expectation, respectively. The determinant and the rank of
a matrix are denoted by det(·) and rank(·), respectively. The
zero mean circular symmetric complex Gaussian distribution
with variance σ2 is denoted by CN (0, σ2). Finally, FN refers
to the N point normalized DFT matrix.

II. SYSTEM MODEL

In this section, first, we describe the transceiver scheme of
the proposed AEE-OTFS system, then, we explain the details
of the proposed AE-based NN.

A. Transmission of AEE-OTFS

We consider an AEE-OTFS transmission system with
N symbols and M subcarriers, where its block diagram
is given in Fig. 1. In this OTFS-based scheme, ∆f and
T = 1/∆f represent subcarrier spacing and symbol duration,
respectively. A total number of b bits enter the system.

These bits are then split into G groups, each including p =
b/G = log2(|X |) bits, where X is the set of all possible
n-dim symbols. For the gth group, p bits are mapped into
an n-dim symbol, xg ∈ Cn×1, g = 1, 2, · · · , G, where
xg ∈ X . The steps of this mapper are discussed in the
sequel. All selected n-dim symbols are concatenated as x =
[xT

1 ,xT
2 , · · · ,xT

G]T and x is provided to the OTFS block
creator and overall delay-Doppler domain OTFS frame is
obtained as X ∈ CM×N . In the next step, X is converted to
the time-frequency domain by using inverse symplectic finite
Fourier transform (ISFFT), and after, using the Heisenberg
transform with pulse-shaping waveform gtx(t), time-domain
transmit signal is obtained as

S = GtxFH
M (FMXFH

N ) = GtxXFH
N , (1)

where Gtx = diag[gtx(0), gtx(T/M), . . . , gtx((M − 1)
T/M)] ∈ CM×M . For transmission, a column-wise vector-
ization is applied to S ∈ CM×N , and the transmit vector
s ∈ CMN×1 is transmitted over the time-varying channel.
Before transmission, a CP is added to s in order to prevent
inter-symbol interference (ISI). The time-varying channel with
response is represented by h(τ, ν) =

∑P
i=1 hiδ(τ − τi)

δ(ν − νi), where P is the number of propagation paths, hi,
τi and νi stand for the complex channel gain, delay shift, and
Doppler shift for the ith path, respectively.

At the receiver, after discarding CP, the received time
domain signal can be expressed as r = Hs + w, where
w ∈ CMN×1 is a vector of zero mean AWGN samples
with CN (0, N0IMN ), N0 is the noise variance, and H ∈
CMN×MN is the time domain channel matrix given by

H =
P∑

i=1

hiΠli∆ki+κi , (2)

where Π = circ{[0, 1, . . . , 0]T} ∈ RMN×MN is the cyclic-
shift matrix, ∆ = diag[1, e−2πj/MN , . . . , e−2πj(MN−1)/MN ]
∈ CMN×MN represents the diagonal Doppler shift matrix.
We define the fading parameters for the ith path as hi ∼
CN (0, 1/P ), τi = li

M∆f , νi = ki+κi

NT where li, ki and κi

represent delay taps, Doppler taps, and fractional Doppler
shift, respectively. We assume that li and ki are integers and
there is no fractional Doppler shift, κi = 0.

After the signal is received, r is de-vectorized and converted
to a matrix R with the size of M×N . Then, the delay-Doppler
domain received signal Y is obtained by applying Wigner
transform and SFFT to R and it can be expressed as:

Y = FH
M (FMGrxR)FN = GrxRFN . (3)
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Fig. 2. The structure of the proposed AE.

Moreover, by combining (1) and (3), the vectorization of Y
can be given as:

y = (FN ⊗Grx)H(FH
N ⊗Gtx)x + w̃ = Heffx + w̃, (4)

where Heff ∈ CMN×MN is the effective delay-Doppler
domain channel matrix and w̃ is the noise in delay-Doppler
domain. In case of rectangular waveforms (i.e., Grx = IM ),
w̃ has the same statistical properties of w. By exploiting
the minimum mean square error (MMSE) equalizer, the
delay-Doppler domain data symbols equalized are obtained as

x̂ = HH
eff(HeffHH

eff + N0IMN )−1y = [x̂T
1 , · · · , x̂T

G]T. (5)

Finally, the gth equalized group (x̂T
g ) is input to the LD or

maximum-likelihood (ML) detector to decode the information
bits. The above process is performed for each group.

B. AE-Based Mapper and Demapper
In this section, we present the proposed mapper and demap-

per for OTFS systems. In the AEE-OTFS method, we exploit
the AE technique to model the mapper and demapper as two
different DNNs. Here, the LM and LD are considered the
encoder and decoder of an AE-based system, respectively.
Since the OTFS system already provides a full diversity [3],
to enhance the error performance of any OTFS system,
one can increase the SMED, which is given by d2

min =
minxϕ ̸=xφ ∥xϕ − xφ∥2, where xζ is the ζth n-dim symbol,
ζ = 1, · · · , |X |. Here, our proposed AE-based system is
trained under an AWGN channel and learns a set of n-dim
symbols (X ) that maximizes the SMED.

As seen from Fig. 2, firstly, a total number of p bits are
converted into a decimal number m, m ∈ {m1, · · · , m|X |}.
Then, m is encoded as a one-hot vector v ∈ R|X |×1 whose
only single element is one where the others are all zeros.
Then, v is passed through single or multiple dense layers to
obtain a transmit vector venc ∈ R2n×1. This encoding process
can be expressed as a function venc = fΩenc(v), where Ωenc

is the parameter set of dense layers of encoder NN. Then,
we utilize a normalization layer to satisfy energy constraints,
i.e., ∥venc∥2 = n. Moreover, venc is converted into a complex
vector x ∈ Cn×1, where the first and second halves of venc

represent the real and imaginary parts of x, respectively. After
that, x is transmitted over an AWGN channel and u = x+ w̄
is obtained, where w̄ is the vector of AWGN samples whose
elements follow the distribution CN (0, N̄0) and N̄0 is the
noise variance. The training signal-to-noise ratio (SNR) is
ρ = 1/N̄0. At the demapper side, u is first converted into
a real-valued vector with dimensions 2n×1 by separating the
real and imaginary parts and then concatenating them. After

that, it is passed through single or multiple dense layers to
obtain vdec ∈ R|X |×1. This process can be represented as a
function vdec = fΩdec(u), Ωdec is the parameter set of dense
layers of decoder NN. The softmax function is used for the
output layer of decoder NN to output a probability vector m̂ =
[m̂1, m̂2, · · · , m̂|X |]T, where the µth element of m̂ denotes the
probability of message mµ being transmitted. The index of the
transmitted message is determined as µ̂ = argmax

µ∈{1,··· ,|X |}
(m̂µ),

and µ̂ is converted into bits.
To train the AE model offline, a set of randomly generated

bits and noise vectors are used. We employ the categorical
cross-entropy loss function and adaptive moment estimation
(Adam) optimizer. Once the training stage of AE is performed,
the learned mapper and demapper can be implemented in
the AEE-OTFS scheme as in Fig. 1. As seen in Fig. 2, the
learned mapper takes p bits as input and outputs the n-dim
symbol, whereas the learned demapper takes the complex
symbol vector as input and outputs p bits.

III. PERFORMANCE ANALYSIS

In this section, for the AEE-OTFS, we obtain an upper
bound on the frame error rate (FER) by using ML.

According to (4), under the assumption of rectangular
pulses, the received signal can be expressed as

y =
P∑

i=1

hi(FN ⊗ IM )Πli∆ki(FH
N ⊗ IM )x + w̃

= Φ(x)h + w̃, (6)

where h = [h1, h2, . . . , hP ]T ∈ CP×1 is the channel gain
vector, and Φ(x) ∈ CMN×P is a concatenated matrix given
by Φ(x) = [Ψ1x,Ψ2x, . . . ,ΨP x] and Ψi ≜ (FN ⊗ IM )
Πli∆ki(FH

N ⊗ IM ).
We assume that perfect CSI is available at the receiver.

When x is transmitted and erroneously detected x̂, the cor-
responding conditional PEP can be expressed as

P (x → x̂|h) = Q

√∥(Φ(x̂)−Φ(x)h)∥2
2N0


= Q

(√
Θ

2N0

)
, (7)

where Θ = hHΓ(x̄)h, Γ(x̄) = Φ(x̄)H − Φ(x̄), x̄ = x− x̂.
By exploiting the approximation of Q(x) [13], we can express
the unconditional PEP (UPEP) as

P (x → x̂) ∼= Eh{(1/12)e−
Θ

4N0 + (1/4)e
Θ

3N0 }. (8)
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Fig. 3. Average FER performance of AEE-OTFS scheme for SE values of
1 and 2 bits/s/Hz and ρ = 5 dB.

Under the assumption h ∼ CN (0, 1
P IP ), the UPEP can be

written as

P (x → x̂) =
1/12

det( 1
P IP + αΓ(x̄))

+
1/4

det( 1
P IP + βΓ(x̄))

(9)

where α = 1/4N0 and β = 1/3N0. As Γ(x̄) is a Hermitian
matrix, the ith nonzero eigenvalue of Γ(x̄) can be described
as λi, i ∈ {1, . . . , r}, where r = rank(Γ(x̄)). As mentioned
in [14], the coding gain depends on λi values and there is a
relation between λi and the SMED of x̄ as

∑r
i=1 λi = Pd2

min.
Using the above analysis, we can express the average FER of
the AEE-OTFS as follows

Pe ≈
1
|X |

∑
x

∑
x̂ ̸=x

P (x → x̂). (10)

IV. SIMULATION RESULTS AND COMPARISONS

In this section, the FER performance of the AEE-OTFS
scheme is evaluated via computer simulations. In all simula-
tions, we define SNR as γ = 1/N0 and assume that CSI is
available at the receiver and the carrier frequency is fc = 4
GHz. Each delay path in all simulations except theoretical
results has a single Doppler shift generated with Jakes’ model
νi = νmax cos (θi), where νmax corresponds to the maximum
Doppler shift depending on the receiver speed and θi is
uniformly distributed over [−π, π]. The receiver speed is taken
as 506 km/h, which corresponds to νmax = 1875 kHz. For the
encoder and decoder NNs of the proposed AE, we consider
one input, one hidden, and one output layer. For training,
hyperparameters are selected such that SMED is maximized
by exploiting a manual search method. The number of hidden
units is selected as 128. Epoch, batch size, and learning
rate are selected as 103, 512, and 0.0001, respectively, and
varying ρ values have been exploited. ML detector is used for
conventional OTFS system while LD is used for AEE-OTFS.

In Fig. 3, we compare computer simulation results for SE
values of 1 and 2 bits/s/Hz with the upper bound FER curves
obtained by (10). In these simulations, an ML detector is
used and the selected system parameters are M = N = 2,
n = 2, subcarrier spacing ∆f = 3.75 kHz, and P = 2 with
delay-Doppler profile (li, ki) = [(0, 0)(1, 1)], i = 1, 2. As seen
from Fig. 3, it is shown that theoretical upper bounds and
computer simulation results coincide with each other in the
high SNR region.

Fig. 4. FER performance comparison of AEE-OTFS scheme using LD for
(a) varying ρ with n = 4 and (b) varying n with ρ = 5 dB.

TABLE I
SMED COMPARISON OF CONVENTIONAL PSK AND AEE-OTFS

In Fig. 4(a), error performance results are presented for
different training SNR ρ values. The system parameters are
specified as M = N = 4, n = 4, and ∆f = 3.75 kHz. For
the channel, we consider P = 4 taps with the maximum delay
tap defined as lmax = 3, and the delay profile is given as
li = [0, 1, 2, 3]. Note that BPSK and QPSK modulations are
implemented for the conventional OTFS system to achieve
1 and 2 bits/s/Hz SE values. As seen from Fig. 4(a), the
optimum training SNR ρ value can be selected as 5 dB.
Additionally, at a FER value of 10−2, AEE-OTFS provides
a 2.6 dB gain over the classical OTFS for a SE value of
1 bits/s/Hz.

In Fig. 4(b), the FER performance of AEE-OTFS is com-
pared to conventional OTFS system for varying block sizes n.
The simulation parameters are the same as those used in
Fig. 4(a). Note that the SE value equals 1.875 bits/s/Hz for
n = 3 and n = 5 since the frame size (M × N = 16) is
not an integer multiple of 3 and 5. Therefore, we apply zero-
padding for n = 3 and n = 5. As seen from Fig. 4(b), the
AEE-OTFS outperforms the conventional OTFS for all values
of n. Moreover, AEE-OTFS with n = 5 performs better than
other parameters. The superiority of the AEE-OTFS technique
over OTFS in terms of error performance can be explained by
the greater SMED values offered by the proposed method,
as shown in Table I.

In Fig. 5, the FER performance of AEE-OTFS is compared
to OFDM and OTFS systems for a larger frame size, M =
N = 32. Extended Vehicular A (EVA) channel model [15]
is used. The subcarrier spacing ∆f is 15 kHz. As seen from
Fig. 5, at a FER value of 10−3, AEE-OTFS approximately
provides 2.8 and 1.9 dB gains over classical OTFS for
1 and 2 bits/s/Hz, respectively. Similarly, LD provides
the same FER performance as that of ML detector.
To investigate the decoding complexity of AEE-OTFS and
OTFS, we calculated runtime in milliseconds. As seen from
Table II, although AEE-OTFS with ML detector is more
complex than classical OTFS with ML, it provides better
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Fig. 5. FER performance comparison of AEE-OTFS scheme for
M = N = 32 with n = 4, SE values of 1 and 2 bits/s/Hz, and ρ = 5 dB.

TABLE II
THE COMPLEXITY COMPARISON OF DIFFERENT DETECTORS FOR

DIFFERENT FRAME SIZES AND BLOCK SIZES

Fig. 6. FER performance comparison of AEE-OTFS scheme using LD with
conventional OTFS for M = N = 16 with n = 4, SE value of 2 bits/s/Hz,
ρ = 5 dB, and ∆f = 15 kHz under imperfect CSI.

error performance. Additionally, LD reduces the complexity
significantly compared to the ML detector. Another important
finding is that the complexity of AEE-OTFS with LD is
considerably less than classical OTFS with ML detector. Also,
note that for larger n values, the number of n-dim symbols |X |
increases. Consequently, decoding complexity also increases.

In Fig. 6, we investigate the error performance of
AEE-OTFS under imperfect CSI and compare it with the
conventional OTFS. As in [16], h̃i is exploited instead of hi

to model the channel estimation error, where h̃i = hi + ϵ,
i = 1, · · · , P , and ϵ ∼ CN (0, σ2

e). As seen from Fig. 6,
AEE-OTFS outperforms the classical OTFS regarding error
performance for different values of σ2

e . As a result, the
proposed scheme is more robust to channel estimation errors
compared to the classical OTFS.

V. CONCLUSION

In this work, we propose an AE-based scheme to improve
the error performance of OTFS by learning a set of n-dim

symbols and maximizing the SMED between them. Using
an AWGN channel instead of a doubly-dispersive channel
provides a simple AE structure to be trained. The encoder and
decoder of AE are used as the mapper and demapper blocks
of a real-time OTFS system after training them under the
AWGN channel. Moreover, a theoretical FER upper bound has
been derived. Computer simulation results show that, in terms
of the FER performance, AEE-OTFS performs better than
the conventional OTFS system. In addition, LD significantly
reduces the decoding complexity. We conclude that the pro-
posed AEE-OTFS scheme can be a candidate for certain 6G
use cases thanks to its outstanding error performance in the
presence of high mobility and flexibility. Optimization of the
proposed system in terms of bit error rate is considered future
work.
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